Deacetylase Activity (deacetylase + activity)

Distribution by Scientific Domains


Selected Abstracts


Cytoplasm-localized SIRT1 enhances apoptosis

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2007
Qihuang Jin
In general, SIRT1 is localized in nuclei. Here, we showed that endogenous and exogenous SIRT1 were both able to partially localize in cytoplasm in certain cell lines, and cytoplasm-localized SIRT1 was associated with apoptosis and led to increased sensitivity to apoptosis. Furthermore, we demonstrated that translocation of nucleus-localized SIRT1 from nuclei to cytoplasm was the main pathway leading to localization of SIRT1 in cytoplasm. In HeLa cells, wild type SIRT1 was completely localized in nuclei. By truncation of two predicted nuclear localization signals or fusion with an exogenous nuclear export signal, SIRT1 was partially localized in cytoplasm of HeLa cells and resulted in increased sensitivity to apoptosis. The apoptosis enhanced by cytoplasm-localized SIRT1 was independent of its deacetylase activity, but dependent on caspases. SIRT1 was distributed in cytoplasm at metaphase during mitosis, and overexpression of SIRT1 significantly augmented apoptosis for cells at metaphase. In summary, we found SIRT1 is able to localize in cytoplasm, and cytoplasm-localized SIRT1 enhances apoptosis. J. Cell. Physiol. 213: 88,97, 2007. © 2007 Wiley-Liss, Inc. [source]


Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription

JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
Maria Joćo Nunes
J. Neurochem. (2010) 113, 418,431. Abstract We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors. [source]


The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy

JOURNAL OF NEUROCHEMISTRY, Issue 6 2009
Sebastian Lunke
Abstract As the leading genetic cause for infantile death, Spinal Muscular Atrophy (SMA) has been extensively studied since its first description in the early 1890s. Though today much is known about the cause of the disease, a cure or effective treatment is not currently available. Recently the short chain fatty acid valproic acid, a drug used for decades in the management of epilepsy and migraine therapy, has been shown to elevate the levels of the essential survival motor neuron protein in cultured cells. In SMA mice, valproic acid diminished the severity of the disease phenotype. This effect was linked to the ability of the short chain fatty acid to suppress histone deacetylase activity and activate gene transcription. Since then, the study of different histone deacetylase inhibitors and their epigenetic modifying capabilities has been of high interest in an attempt to find potential candidates for effective treatment of SMA. In this review, we summarize the current knowledge about use of histone deacetylase inhibitors in SMA as well as their proposed effects on chromatin structure and discuss further implications for possible treatments of SMA arising from research examining epigenetic change. [source]


Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics

MOLECULAR MICROBIOLOGY, Issue 6 2003
Nancy A. Buchmeier
Summary Mycothiol, MSH or 1d - myo -inosityl 2-(N -acetyl- l -cysteinyl)amido-2-deoxy- , - d -glucopyranoside, is an unusual conjugate of N -acetylcysteine (AcCys) with 1d - myo -inosityl 2-acetamido-2-deoxy-,- d -glucopyranoside (GlcN-Ins), and is the major low-molecular-mass thiol in mycobacteria. Mycothiol has antioxidant activity as well as the ability to detoxify a variety of toxic compounds. Because of these activities, MSH is a candidate for protecting Mycobacterium tuberculosis from inactivation by the host during infections as well as for resisting antituberculosis drugs. In order to define the protective role of MSH for M. tuberculosis, we have constructed an M. tuberculosis mutant in Rv1170, one of the candidate MSH biosynthetic genes. During exponential growth, the Rv1170 mutant bacteria produced , 20% of wild-type levels of MSH. Levels of the Rv1170 substrate, GlcNAc-Ins, were elevated, whereas those of the product, GlcN-Ins, were reduced. This establishes that the Rv1170 gene encodes for the major GlcNAc-Ins deacetylase activity (termed MshB) in the MSH biosynthetic pathway of M. tuberculosis. The Rv1170 mutant grew poorly on agar media lacking catalase and oleic acid, and had heightened sensitivities to the toxic oxidant cumene hydroperoxide and to the antibiotic rifampin. In addition, the mutant was more resistant to isoniazid, suggesting a role for MSH in activation of this prodrug. These data indicate that MSH contributes to the protection of M. tuberculosis from oxidants and influences resistance to two first-line antituberculosis drugs. [source]


Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite Encephalitozoon cuniculi

PROTEIN SCIENCE, Issue 6 2009
Jonathan E. Urch
Abstract The microsporidian Encephalitozoon cuniculi is an intracellular eukaryotic parasite considered to be an emerging opportunistic human pathogen. The infectious stage of this parasite is a unicellular spore that is surrounded by a chitin containing endospore layer and an external proteinaceous exospore. A putative chitin deacetylase (ECU11_0510) localizes to the interface between the plasma membrane and the endospore. Chitin deacetylases are family 4 carbohydrate esterases in the CAZY classification, and several bacterial members of this family are involved in evading lysis by host glycosidases, through partial de- N -acetylation of cell wall peptidoglycan. Similarly, ECU11_0510 could be important for E. cuniculi survival in the host, by protecting the chitin layer from hydrolysis by human chitinases. Here, we describe the biochemical, structural, and glycan binding properties of the protein. Enzymatic analyses showed that the putative deacetylase is unable to deacetylate chitooligosaccharides or crystalline ,-chitin. Furthermore, carbohydrate microarray analysis revealed that the protein bound neither chitooligosaccharides nor any of a wide range of other glycans or chitin. The high resolution crystal structure revealed dramatic rearrangements in the positions of catalytic and substrate binding residues, which explain the loss of deacetylase activity, adding to the unusual structural plasticity observed in other members of this esterase family. Thus, it appears that the ECU11_0510 protein is not a carbohydrate deacetylase and may fulfill an as yet undiscovered role in the E. cuniculi parasite. [source]


Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and regulates the number of microtubular assemblies during the cell cycle

CELLULAR MICROBIOLOGY, Issue 7 2010
Somasri Dam
Summary We have discovered four sirtuin genes in Entamoeba histolytica, two of which are similar to eukaryotic sirtuins and two to bacterial and archaeal sirtuins. The eukaryotic sirtuin homologue, EhSir2a, showed NAD+ -dependent deacetylase activity and was sensitive to class III HDAC inhibitors. Localization of EhSir2a at different cellular sites suggested that this deacetylase could have multiple targets. Using an E. histolytica cDNA library in the yeast two-hybrid genetic screen, we identified several proteins that bound to EhSir2a. These proteins included Eh ,-tubulin, whose interaction with EhSir2a was validated in E. histolytica. We have shown that EhSir2a deacetylated tubulin and localized with microtubules in E. histolytica. Increased expression levels of EhSir2a in stable transformants led to reduced number of microtubular assemblies in serum synchronized cells. This effect was abrogated by mutations in the deacetylase domain of EhSir2a, showing that EhSir2a deacetylase activity affected the stability and number of microtubular assemblies during the cell cycle of E. histolytica. Our results suggest that epigenetic modification of tubulin by EhSir2a is one of the mechanisms that regulates microtubular assembly in E. histolytica. [source]