Dermal Fibroblasts (dermal + fibroblast)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Dermal Fibroblasts

  • human dermal fibroblast
  • normal human dermal fibroblast


  • Selected Abstracts


    Involvement of Reactive Oxygen Species in TGF-,1-induced Tropoelastin Expression by Human Dermal Fibroblasts

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2009
    Won Seon Choi
    Chronic exposure to solar UV radiation causes marked changes in the dermal extracellular matrix that underlie the loss of resiliency and increased laxity observed in photoaged skin. In particular, the dermal elastin content increases substantially and the normal, well-organized elastic fibers are replaced by amorphous elastotic material. Transforming growth factor-,1 (TGF-,1) stimulates synthesis of elastin by dermal fibroblasts and may mediate the increase in elastin in chronically photodamaged skin. We investigated pathways involved in the TGF,,1-induced increase in tropoelastin (TE), the soluble elastin monomer and assessed the role of reactive oxygen species (ROS) in the regulation of TE mRNA. Antioxidants and an inhibitor of NADPH oxidase blocked TGF,,1-induced TE mRNA increase even when added 1.5 h after TGF-,1, although ROS were detected for only 30 min. The TE mRNA increase required activation of Smad4, shown using Smad4 siRNA, and also involved the ERK1/2, p38 and JNK MAP kinases but not PI3K. ROS did not enhance signaling through Smad2 but did enhance activation of p38 and ERK1/2 at 10 min after TGF-,1. These results indicate that Smad and MAPK pathways mediate TGF,,1-induced TE expression and that ROS are required for both early signal transduction and later steps that increase elastin. [source]


    Effects of Mitomycin-C on Normal Dermal Fibroblasts,

    THE LARYNGOSCOPE, Issue 4 2006
    Theodore Chen MD
    Abstract Objectives: To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. Study Design: In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Methods: Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-,1. Results: Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-,1. Conclusions: A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro. [source]


    Dermal fibroblasts contribute to multiple tissues in the accessory limb model

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2010
    Ayako Hirata
    The accessory limb model has become an alternative model for performing investigations of limb regeneration in an amputated limb. In the accessory limb model, a complete patterned limb can be induced as a result of an interaction between the wound epithelium, a nerve and dermal fibroblasts in the skin. Studies should therefore focus on examining these tissues. To date, however, a study of cellular contributions in the accessory limb model has not been reported. By using green fluorescent protein (GFP) transgenic axolotl tissues, we can trace cell fate at the tissue level. Therefore, in the present study, we transgrafted GFP skin onto the limb of a non-GFP host and induced an accessory limb to investigate cellular contributions. Previous studies of cell contribution to amputation-induced blastemas have demonstrated that dermal cells are the progenitors of many of the early blastema cells, and that these cells contribute to regeneration of the connective tissues, including cartilage. In the present study, we have determined that this same population of progenitor cells responds to signaling from the nerve and wound epithelium in the absence of limb amputation to form an ectopic blastema and regenerate the connective tissues of an ectopic limb. Blastema cells from dermal fibroblasts, however, did not differentiate into either muscle or neural cells, and we conclude that dermal fibroblasts are dedifferentiated along its developmental lineage. [source]


    Subculture affects the phenotypic expression of human periodontal ligament cells and their response to fibroblast growth factor-2 and bone morphogenetic protein-7,in vitro

    JOURNAL OF PERIODONTAL RESEARCH, Issue 5 2008
    S. Lossdörfer
    Background and Objective:, Although periodontal ligament cells display several osteoblastic traits, their phenotypic expression is still not well established. It remains a matter of debate whether they resemble a terminally differentiated cell type or an intermediate maturation state that potentially can be directed towards a fibroblastic or an osteoblastic phenotype. Material and Methods:, To explore the characteristics of periodontal ligament cells in greater detail, fourth-passage, sixth-passage and eighth-passage human periodontal ligament cells were cultured for up to 3 wk. Ki-67, alkaline phosphatase, osteocalcin, osteoprotegerin and receptor activator of nuclear factor-,B ligand (RANKL) mRNA expression was quantified by real-time polymerase chain reaction. Furthermore, the cellular response to fibroblast growth factor-2 and bone morphogenetic protein-7 was examined in first-passage and fourth-passage cells. Dermal fibroblasts (1BR.3.G) and osteoblast-like cells (MG63) served as reference cell lines. Results:, Proliferation decreased over time and was highest in fourth-passage cells. The expression of differentiation parameters, osteoprotegerin and RANKL increased with culture time and was higher in fourth-passage cells than in cells of later passages. The RANKL/osteoprotegerin ratio increased steadily until day 21. Administration of fibroblast growth factor-2 enhanced cell numbers in both passages, whereas alkaline phosphatase and osteocalcin production remained unchanged. By contrast, exposure of periodontal ligament cells to bone morphogenetic protein-7 resulted in a reduction of cell number in the first and fourth passages, whereas the production of alkaline phosphatase and osteocalcin was enhanced. In dermal fibroblasts, differentiation parameters did not respond to both stimuli. MG63 cells behaved similarly to periodontal ligament cells. Conclusion:, These results indicate that subculture affects the phenotypic expression of human periodontal ligament cells with respect to the characteristics that these cells share with osteoblasts. Furthermore, the periodontal ligament cell phenotype can be altered by fibroblastic and osteoblastic growth factors. [source]


    Fibronectin Functionalized Hydroxyapatite Coatings: Improving Dermal Fibroblast Adhesion In Vitro and In Vivo,

    ADVANCED ENGINEERING MATERIALS, Issue 8 2010
    Catherine J. Pendegrass
    Skin-penetrating devices including intraosseous transcutaneous amputation prostheses (ITAP) and external fixator pins rely on a skin-implant seal to prevent infection. In this study, we assess the effectiveness of fibronectin (Fn) functionalized hydroxyapatite (HA) coatings for promoting dermal fibroblast and dermal tissue attachment and ingrowth in vitro and in vivo. By measuring the number of focal adhesions per unit cell area we have demonstrated that HA significantly promotes dermal fibroblast attachment compared with titanium alloy. Dermal fibroblast attachment is promoted further using Fn functionalized HA coatings incorporated into an implant design with 700,µm pores, which significantly increased dermal tissue ingrowth and attachment compared with non-functionalized HA and titanium alloy controls incorporating 500 or 1000,µm pores. We postulate that Fn functionalized HA coatings applied to transdermal implants may promote and sustain the skin-implant interface and assist in preventing infection long term. [source]


    Development of effects of plant extracts on the activity and expression of UVA-induced MMPs (matrix metalloproteases)

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 6 2004
    D.-H. Lee
    The effects of several natural products on in vitro MMP-1 activity and UVA-induced MMP-1 synthesis in human dermal fibroblast (HDF) cultures were studied with the aim of developing novel anti-aging agents from natural sources. We measured MMP-1 activities by fluorescence assay using gelatin as substrates. In addition, UVA-induced MMP-1 expression was analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in HDF cultures, and RT-PCR techniques were used. The results showed a strong inhibitory effect of the extracts of Dicentra spectabilis and of the flower buds of Tussilago farfara. In a concentration of 0.05% (w/v), the extracts of the flower buds of Tussilago farfara and of Dicentra spectabilis inhibited MMP-1 activity by 92 and 87% respectively. At 0.1% (w/v), the extracts of the flower buds of Tussilago farfara and of Dicentra spectabilis suppressed the UVA-induced expression of MMP-1 by an amount similar to that with Vitamin C 200 ,m. These results suggest that the extracts of Dicentra spectabilis and of the flower buds of Tussilago farfara effectively protect skin from UV-induced photoaging. Therefore, the extracts are thought to have potential as effective raw materials for anti-aging cosmetics. [source]


    Polyelectrolyte complex hydrogel composed of chitosan and poly(,-glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
    Hahk-Soo Kang
    Abstract Polyelectrolyte complex (PEC) hydrogels composed of chitosan as a cationic polyelectrolyte and poly (,-glutamic acid) (,-PGA) as an anionic polyelectrolyte were prepared from PEC dispersions based on a chitosan solution to which different amounts of ,-PGA solutions were added to charge equivalency. The chemical structures of the PEC hydrogels were investigated by Fourier transform infrared spectroscopy. The physical properties, fixed charge concentration, crystallinity, mechanical properties, micromorphology, and swelling properties of the PEC hydrogels were also investigated. The total fixed charge concentration of the PEC hydrogels varied as a function of pH on the pK intervals between chitosan (pK = 6.5) and ,-PGA (pK = 2.27). The isoelectric points (IEP) were shifted to a lower pH with a higher weight ratio of ,-PGA to chitosan. The elastic modulus was decreased with the weight ratio increasing from 0 : 1 to 1 : 1 (,-PGA/chitosan) by ionic crosslinking between the amino groups of chitosan and the carboxyl groups of ,-PGA. The results of the swelling study showed that the swelling properties of PEC hydrogels were more affected by the change in the elastic restoring force than by the change in the fixed charge concentration depending on the pH. Also, the cytotoxicity of the PEC hydrogels was investigated using normal human dermal fibroblast (NHDF) cell lines, and the results showed the PEC hydrogels were not toxic. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:386,394, 2007 [source]


    Non-skin mesenchymal cell types support epidermal regeneration in a mesenchymal stem cell or myofibroblast phenotype-independent manner

    PATHOLOGY INTERNATIONAL, Issue 6 2009
    Shigehisa Aoki
    Skin-derived fibroblasts, preadipocytes and adipocytes, and non-skin-derived bone marrow stromal cells support epidermal regeneration. It remains unclear, however, whether various organ-derived mesenchymal cell (MC) types other than the aforementioned counterparts affect epidermal regeneration. Using a skin reconstruction model, it is shown here that heart-, spleen-, lung-, liver- and kidney-derived MC support epidermal regeneration by keratinocytes. Immunohistochemistry showed that these MC types described here allowed keratinocytes to express cytokeratin (CK) 10, CK14 and involucrin in a normal fashion, and to retain the epidermal progenitor cell marker, p63, within the basal layer. MC types constantly expressed vimentin, but they were heterogeneous in their expression of the mesenchymal stem cell markers, stage-specific embryonic antigen-4, CD105, CD90 and CD44, and the myofibroblast marker, ,-smooth muscle actin. The MC types expressed keratinocyte growth factor, stromal-derived factor-1 and interleukin-6, which are all critical for dermal fibroblast,keratinocyte interaction. These results indicate that vimentin-positive MC originating from the heart, spleen, lung, liver and kidney can support epidermal regeneration without the involvement of mesenchymal stem cell and myofibroblast phenotypes of MC. [source]


    Contractility of single human dermal myofibroblasts and fibroblasts

    CYTOSKELETON, Issue 2 2002
    Louise K. Wrobel
    Abstract Human dermal myofibroblasts, characterised by the expression of ,-smooth muscle actin, are part of the granulation tissue and implicated in the generation of contractile forces during normal wound healing and pathological contractures. We have compared the contractile properties of single human dermal fibroblasts and human dermal myofibroblasts by culturing them on flexible silicone elastomers. The flexibility of the silicone substratum permits the contractile forces exerted by the cells to be measured [Fray et al., 1998: Tissue Eng. 4:273,283], without changing their expression of ,-smooth muscle actin. The mean contractile force produced by myofibroblasts (2.2 ,N per cell) was not significantly different from that generated by fibroblasts (2.0 ,N per cell) when cultured on a substrata with a low elastomer stiffness. Forces produced by fibroblasts were unaffected by increases in elastomer stiffness, but forces measured for myofibroblasts increased to a mean value of 4.1 ,N/cell. This was associated with a higher proportion of myofibroblasts being able to produce wrinkles on elastomers of high stiffness compared to fibroblasts. We discuss the force measurements at the single cell level, for both fibroblast and myofibroblasts, in relation to the proposed role of myofibroblasts in wound healing and pathological contractures. Cell Motil. Cytoskeleton 52:82,90, 2002. © 2002 Wiley-Liss, Inc. [source]


    Dermal fibroblasts contribute to multiple tissues in the accessory limb model

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2010
    Ayako Hirata
    The accessory limb model has become an alternative model for performing investigations of limb regeneration in an amputated limb. In the accessory limb model, a complete patterned limb can be induced as a result of an interaction between the wound epithelium, a nerve and dermal fibroblasts in the skin. Studies should therefore focus on examining these tissues. To date, however, a study of cellular contributions in the accessory limb model has not been reported. By using green fluorescent protein (GFP) transgenic axolotl tissues, we can trace cell fate at the tissue level. Therefore, in the present study, we transgrafted GFP skin onto the limb of a non-GFP host and induced an accessory limb to investigate cellular contributions. Previous studies of cell contribution to amputation-induced blastemas have demonstrated that dermal cells are the progenitors of many of the early blastema cells, and that these cells contribute to regeneration of the connective tissues, including cartilage. In the present study, we have determined that this same population of progenitor cells responds to signaling from the nerve and wound epithelium in the absence of limb amputation to form an ectopic blastema and regenerate the connective tissues of an ectopic limb. Blastema cells from dermal fibroblasts, however, did not differentiate into either muscle or neural cells, and we conclude that dermal fibroblasts are dedifferentiated along its developmental lineage. [source]


    Synthesis, Solution Structure and Biological Activity of Val-Val-Pro-Gln,a Bioactive Elastin Peptide

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2005
    Caterina Spezzacatena
    Abstract Val-Val-Pro-Gln (valyl-valyl-prolyl-glutamine) is a small but highly conserved sequence present in all elastins. We describe its synthesis by mixed anhydride solution chemistry as an alternative to solid-phase peptide synthesis (SPPS). The molecular structure of the tetrapeptide in solution was investigated by classical spectroscopy, such as circular dichroism (CD), nuclear magnetic resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). The biological activity of Val-Val-Pro-Gln was evaluated by a bromodeoxyuridine (BrdU) incorporation assay with normal human dermal fibroblasts. This small peptide may play a critical role in control of matrix metabolism through its release from the elastin polypeptide chain during periods of tissue breakdown and remodelling. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    Vitamin C attenuates ERK signalling to inhibit the regulation of collagen production by LL-37 in human dermal fibroblasts

    EXPERIMENTAL DERMATOLOGY, Issue 8 2010
    Hyun Jeong Park
    Please cite this paper as: Vitamin C attenuates ERK signalling to inhibit the regulation of collagen production by LL-37 in human dermal fibroblasts. Experimental Dermatology 2010; 19: e258,e264. Abstract:, Vitamin C is used as an anti-ageing agent because of its collagen enhancing effects. The precise cellular signalling mechanism of vitamin C is not well known. Here, we investigate the profibrotic mechanism of vitamin C against LL-37. Antimicrobial peptide LL-37 decreases collagen expression at mRNA and protein levels in human dermal fibroblasts (HDFs). The ability of LL-37 to inhibit collagen expression is dependent on phosphorylation of extracellular signal-regulated kinase (ERK). HDFs and human keloid fibroblasts were treated with vitamin C followed by 2 h of LL-37 treatment. Collagen mRNA expression and total soluble collagen production inhibited by LL-37 was enhanced by treatment with 0.5 mm vitamin C. Vitamin C also decreased intracellular reactive oxygen intermediates (ROI) levels that were increased by LL-37. Furthermore, the phosphorylation of ERK was analysed by Western blot following treatment with vitamin C and LL-37. Vitamin C turned off phosphorylation of ERK that was induced by LL-37. Ets-1 transcriptional factor, which is involved in the regulation of collagen expression by LL-37, was also inhibited by vitamin C. This study shows that vitamin C enhances collagen production by inhibiting the ERK pathway induced by LL-37. [source]


    Effects of oestrogen agonists on human dermal fibroblasts in an in vitro wounding assay

    EXPERIMENTAL DERMATOLOGY, Issue 11 2009
    Susan Stevenson
    Abstract:, Oestrogen and dehydroepiandrosterone (DHEA) improve wound healing, but circulating levels decline significantly with age. Recently, the selective oestrogen receptor modulators (SERMs) tamoxifen and raloxifene have been shown to improve age-associated impaired wound healing. Therefore, we have evaluated the effects of 17,-oestradiol, ER, and ER, agonists, tamoxifen, raloxifene and DHEA on human dermal fibroblasts using an in vitro wound assay. An ER, agonist, 17,-oestradiol and DHEA all significantly accelerated cell migration; the DHEA effect was blocked with an aromatase inhibitor. Tamoxifen, raloxifene and DHEA all significantly increased DNA synthesis; the DHEA stimulatory effect was reversed by an aromatase inhibitor. This study demonstrates that 17,-oestradiol, an ER, agonist, tamoxifen, raloxifene and DHEA (following conversion to oestrogen) all have significant effects on human fibroblasts, the key mesenchymal cell involved in the wound healing process. Further understanding of the mechanisms involved may have important implications for the management of age-related impaired wound healing. [source]


    Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay

    EXPERIMENTAL DERMATOLOGY, Issue 2 2007
    Satoshi Amano
    Abstract:, Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor- ,1 (TGF- ,1). The synthesis of type VII collagen was elevated by TGF- ,1, platelet-derived growth factor, tumor necrosis factor- ,, and interleukin-1,, but not by TGF- ,. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level. [source]


    LOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expression

    EXPERIMENTAL DERMATOLOGY, Issue 8 2006
    Valérie Cenizo
    Abstract:, The lysyl oxidases lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are responsible for elastin cross-linking. It was shown recently that LOXL is essential for the elastic fibres homeostasis and for their maintenance at adult age. We first determined whether or not elastin, LOX and LOXL are less expressed during adulthood. The LOX and LOXL mRNA level, quantified by real-time reverse transcriptase-polymerase chain reaction decreased in adult skin fibroblasts compared with fibroblasts from children. In contrast, the elastin mRNA level remains stable at all ages. The goal of this study was to induce elastogenesis at the adult age. Therefore, both enzymes, and in particular LOXL, of which expression is the most affected by age, could be targeted to induce elastogenesis in adult skin. We screened a library of about 1000 active ingredients to find activators capable to stimulate specifically the LOXL gene expression in adult dermal fibroblasts. The positive effect of selected active ingredients was confirmed on fibroblasts grown on monolayers and on dermal and skin equivalent cultures. One extract, obtained from dill (LYS'LASTINE V, Engelhard, Lyon, France), stimulates the LOXL gene expression in dermal equivalents (+64% increase in the LOXL mRNA level when compared with control). At the same time, the elastin detection is increased in dermal equivalents and under the dermal,epidermal junction of skin equivalents, without increase of the elastin mRNA. In conclusion, LOXL can be considered as a new target to reinduce elastogenesis. Its stimulation by a dill extract is correlated with increased elastin detection, suggesting an increase in elastogenesis efficiency. [source]


    Human skin: source of and target organ for angiotensin II

    EXPERIMENTAL DERMATOLOGY, Issue 3 2004
    U. Muscha Steckelings
    Abstract:, The present study examined the expression of angiotensin receptors in human skin, the potential synthesis of angiotensin II (Ang II) in this location and looked for a first insight into physiological functions. AT1 and AT2 receptors were found within the epidermis and in dermal vessel walls. The same expression pattern was found for angiotensinogen, renin and angiotensin-converting enzyme (ACE). All components could additionally be demonstrated at mRNA level in cultured primary keratinocytes, melanocytes, dermal fibroblasts and dermal microvascular endothelial cells, except for AT2 receptors in melanocytes. The ability of cutaneous cells to synthesize Ang II was proved by identifying the molecule in cultured keratinocytes. Furthermore, in artificially wounded keratinocyte monolayers, ACE-mRNA expression was rapidly increased, and enhanced ACE expression was still found in cutaneous human scars 3 months after wounding. These findings suggest that the complete renin,angiotensin system is present in human skin and plays a role in normal cutaneous homeostasis as well as in human cutaneous wound healing. [source]


    Signalling and regulation of collagen I synthesis by ET-1 and TGF-,1

    FEBS JOURNAL, Issue 24 2005
    Angelika Horstmeyer
    Endothelin-1 (ET-1) plays an important role in tissue remodelling and fibrogenesis by inducing synthesis of collagen I via protein kinase C (PKC). ET-1 signals are transduced by two receptor subtypes, the ETA- and ETB-receptors which activate different G, proteins. Here, we investigated the expression of both ET-receptor subtypes in human primary dermal fibroblasts and demonstrated that the ETA-receptor is the major ET-receptor subtype expressed. To determine further signalling intermediates, we inhibited G,i and three phospholipases. Pharmacologic inhibition of G,i, phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD), but not of phospholipase C,, abolished the increase in collagen I by ET-1. Inhibition of all phospholipases revealed similar effects on TGF-,1 induced collagen I synthesis, demonstrating involvement of PC-PLC and PLD in the signalling pathways elicited by ET-1 and TGF-,1. ET-1 and TGF-,1 each stimulated collagen I production and in an additive manner. ET-1 further induced connective tissue growth factor (CTGF), as did TGF-,1, however, to lower levels. While rapid and sustained CTGF induction was seen following TGF-,1 treatment, ET-1 increased CTGF in a biphasic manner with lower induction at 3 h and a delayed and higher induction after 5 days of permanent ET-1 treatment. Coincidentally at 5 days of permanent ET-1 stimulation, a switch in ET-receptor subtype expression to the ETB-receptor was observed. We conclude that the signalling pathways induced by ET-1 and TGF-,1 leading to augmented collagen I production by fibroblasts converge on a similar signalling pathway. Thereby, long-time stimulation by ET-1 resulted in a changed ET-receptor subtype ratio and in a biphasic CTGF induction. [source]


    Influence of an extract from kudzu symbiosomes containing leghemoglobin on in vitro cutaneous procollagen production

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 3 2010
    J. V. Gruber
    J. Cosmet. Sci., 60, 475,484 (September/October 2009) Synopsis Cytoglobin is a hexacoordinateglobin protein that was recently discovered in mammals. Interestingly, of the four human globin proteins that are now known, hemoglobin, myoglobin, neuroglobin and cytoglobin, the latter appears to have the closest resemblance to strikingly similar proteins expressed in plants. In legumes, these proteins accumulate in symbiosomes (root nodules) of various legumes and are called leghemoglobin. The paper will discuss the ability of an aqueous extract from Pueraria lobata (kudzu) symbiosomes that contains leghemoglobin to stimulate procollagen production in human dermal fibroblasts. This effect may be partly due to the possibility that leghemoglobin may mimic the function of cytoglobin by shuttling oxygen to prolyl-4-hydroxylase, the enzyme responsible for oxidizing proline residues in procollagen bundles. This hypothesis is supported by DNA microarray sequencing data that demonstrate that treatment of normal human dermal fibroblasts (NHDF) with highly purified cytoglobin or leghemoglobin upregulates a number of key collagen-related genes including COL1A1 and COL1A2. [source]


    An in vitro examination of an extracellular matrix scaffold for use in wound healing

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 5 2002
    Denis E. Solomon
    Summary. This paper describes evidence that an extracellular matrix (ECM) secreted by human umbilical vein endothelial cells (HUVECs) assembled on gelatin coated plates overlaid by a mixed matrix secreted by human dermal microvascular endothelial cells (HDMECs) and human dermal fibroblasts provides a viable acellular scaffold for use in wound healing. Trypsinized epidermal keratinocytes or colonies from Dispase-digested fresh and cadaver skin tissue adhered and proliferated on either HUVECs ECM/gelatin or mixed matrix overlaid on HUVECs ECM/gelatin. An epithelial,mesenchymal interaction, previously thought to be tissue-specific, was exposed as well as concomitant integrin versatility. Furthermore, heterologous HDMECs and dermal fibroblasts attached and proliferated on the mixed matrix as well as HUVECs ECM. The conditioned medium from HUVECs (HUVECs CM) was found to neutralize the lingering after effects of Dispase, and could be used for the tissue culture of epidermal keratinocytes, HDMECs and dermal fibroblasts, which share related extracellular secretions. Taken together, these results indicate that cultured epithelial autografts can be redesigned to include both epithelial and dermal elements, and advances the acellular ,sandwich' ECM scaffold as a possible structural replacement for the lamina densa and lamina lucida, damaged or completely missing in some wounds and burns. [source]


    The characterization and optimization of injectable silicone resin particles in conjunction with dermal fibroblasts and growth factors: An in vitro study

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2010
    Robert M. Crews
    Abstract Minimally invasive subdermal injection of liquid silicone has been used clinically to augment the soft tissue of the foot to mitigate high pressures that cause diabetic foot ulcers. However, implant migration has been a clinical issue. The objective of this study was to assess the effects of three specific concentrations of silicone resin particles (12 ,m average diameter) in conjunction with either platelet-derived growth factor (PDGF-BB) or basic fibroblast growth factor (bFGF) on fibroblast cell proliferation, collagen synthesis, cell morphology, and migration through in vitro assays and a monolayer scratch wound model. PDGF and bFGF enhanced the proliferation of fibroblasts 5.7-fold and fivefold, respectively, while the addition of silicone particles had no significant effect on proliferation. Collagen production was increased approximately twofold with the addition of bFGF and the medium concentration of particles over bFGF without particles and the PDGF groups. The addition of silicone particles had no significant effect on collagen production compared with control groups without particles. Fibroblast migration was enhanced by the addition of both PDGF and bFGF compared to controls, although slower scratch wound closure rates were observed in the presence of particles compared to controls without particles. Cell morphology suggested that particles induced cellular aggregation encircling silicone particles postwounding as well as migration into the wound area. These results suggest that silicone particles in combination with a growth factor might enhance fibroblast aggregation and implant stability, and could promote connective tissue ingrowth and implant encapsulation in the soft tissue of the diabetic foot. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010 [source]


    GNAS1 Mutation and Cbfa1 Misexpression in a Child with Severe Congenital Platelike Osteoma Cutis,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000
    George L. Yeh
    Abstract We evaluated a 7-year-old girl with severe platelike osteoma cutis (POC), a variant of progressive osseous heteroplasia (POH). The child had congenital heterotopic ossification of dermis and subcutaneous fat that progressed to involve deep skeletal muscles of the face, scalp, and eyes. Although involvement of skeletal muscle is a prominent feature of POH, heterotopic ossification has not been observed in the head, face, or extraocular muscles. The cutaneous ossification in this patient was suggestive of Albright hereditary osteodystrophy (AHO); however, none of the other characteristic features of AHO were expressed. Inactivating mutations of the GNAS1 gene, which encodes the ,-subunit of the stimulatory G protein of adenylyl cyclase, is the cause of AHO. Mutational analysis of GNAS1 using genomic DNA of peripheral blood and of lesional and nonlesional tissue from our patient revealed a heterozygous 4-base pair (bp) deletion in exon 7, identical to mutations that have been found in some AHO patients. This 4-bp deletion in GNAS1 predicts a protein reading frameshift leading to 13 incorrect amino acids followed by a premature stop codon. To investigate pathways of osteogenesis by which GNAS1 may mediate its effects, we examined the expression of the obligate osteogenic transcription factor Cbfa1/RUNX2 in lesional and uninvolved dermal fibroblasts from our patient and discovered expression of bone-specific Cbfa1 messenger RNA (mRNA) in both cell types. These findings document severe heterotopic ossification in the absence of AHO features caused by an inactivating GNAS1 mutation and establish the GNAS1 gene as the leading candidate gene for POH. [source]


    Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKT

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009
    Elia Ranzato
    Abstract There is a growing interest for the clinical use of platelet derivates in wound dressing. Platelet beneficial effect is attributed to the release of growth factors and other bioactive substances, though mechanisms are mostly unknown. We studied wound-healing processes of human primary fibroblasts, by exposing cells to a platelet lysate (PL) obtained from blood samples. Crystal violet and tetrazolium salt (MTS) assays showed dose,response increase of cell proliferation and metabolism. In scratch wound and transwell assays, a dose of 20% PL induced a significant increase of wound closure rate at 6 and 24 hrs, and had a strong chemotactic effect. BAPTA-AM, SB203580 and PD98059 caused 100% inhibition of PL effects, whereas wortmannin reduced to about one third the effect of PL on wound healing and abolished the chemotactic response. Confocal imaging showed the induction by PL of serial Ca2+ oscillations in fibroblasts. Data indicate that cell Ca2+ plays a fundamental role in wound healing even without PL, p38 and ERK1/2 are essential for PL effects but are also activated by wounding per se, PI3K is essential for PL effects and its downstream effector Akt is activated only in the presence of PL. In conclusion, PL stimulates fibroblast wound healing through the activation of cell proliferation and motility with different patterns of involvement of different signalling pathways. [source]


    Inhibition of connective tissue growth factor/CCN2 expression in human dermal fibroblasts by interleukin-1, and ,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
    D. Nowinski
    Abstract Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)-, and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF-,-induced expression of CTGF in fibroblasts by an interleukin (IL)-1 ,-dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL-1, and ,. Human dermal fibroblasts and NIH 3T3 cells were treated with IL-1, or , in presence or absence of TGF-,1. IL-1 suppressed basal and TGF-,-induced CTGF mRNA and protein expression. IL-1, and , inhibited TGF-,-stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3-binding CAGA elements. Furthermore, IL-1, and , inhibited TGF-,-stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF-, activated kinase1 (TAK1) is necessary for IL-1 inhibition of TGF-,-stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226,1233, 2010. Published 2010 Wiley-Liss, Inc. [source]


    Expression of a releasable form of annexin II by human keratinocytes

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2002
    Feridoun Karimi-Busheri
    Abstract Annexin II is a multifunctional calcium-dependent phospholipid binding protein whose presence in epidermis has previously been reported. However, like other members of annexin family, annexin II has been regarded as either an intracellular protein or associated with the cellular membrane. Here, we report the presence of a releasable annexin II and p11, two monomers of annexin II tetramer, in keratinocyte-conditioned medium (KCM). Proteins present in KCM were fractionated on a gel filtration column and following further evaluation, a releasable protein with apparent MW of 36 kDa was identified. Further characterization identified this protein as the p36 monomer of annexin II tetramer. The phospho-tyrosine antibody did not visualize this protein as the phosphorylated form of p36. Several experiments were conducted to examine whether this protein is soluble or associated with keratinocyte cell membranes in the conditioned medium. A centrifugation of conditioned medium was not able to bring this protein down into the pellet. Surprisingly, the results of Western analysis identified p36 and p11, two monomers of the annexin II tetramer, in conditioned medium derived from either keratinocytes cultured alone or keratinocytes co-cultured with fibroblasts. In contrast to the keratinocyte-conditioned medium in which annexin II was easily detectable, both monomers were barely detectable in conditioned medium collected from dermal fibroblasts. This finding was in contrast to the cell lysates in which p36 was detectable in both keratinocytes and fibroblasts. However, the amount of this protein was markedly higher in keratinocyte lysate relative to that of dermal fibroblasts. Conditioned medium derived from keratinocyte established from adult showed a higher level of annexin II compared to that of keratinocytes established from newborn babies. The expression of p11 seems to increase with differentiation of keratinocytes derived from either adult or newborn skin samples. When the site of annexin synthesis in human skin was examined by immunohistochemical staining, the antibody for p36 localized the annexin to the keratinocyte cell members in the basal and suprabasal keratinocytes. In conclusion, Western blot detection of both p36 and p11 in conditioned medium from skin cells revealed that human keratinocytes, but not fibroblasts, express a releasable monomer form of annexin II which is regulated by differentiation status of keratinocytes. This finding is consistent with the localization of annexin II detected by immunohistochemical staining. J. Cell. Biochem. 86: 737,747, 2002. © 2002 Wiley-Liss, Inc. [source]


    Shedding of microparticles by myofibroblasts as mediator of cellular cross-talk during normal wound healing

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010
    Véronique J. Moulin
    Interactions between cells are a crucial mechanism to correctly heal a wounded tissue. Myofibroblasts have a central role during healing but their means to communicate with other cells is unknown. Microparticles (MP) have demonstrated a potential role as mediators of cellular interactions during various diseases. We have analyzed the production of MP by normal (Wmyo) and pathological (hypertrophic scar, Hmyo) myofibroblasts and human dermal fibroblasts (Fb) when treated with serum or plasma as examples of body fluids. We have shown that the presence of these body fluids induced a very significant increase in MP production by Wmyo while no MP production was denoted for Hmyo and Fb. These effects were at least due to thermally sensitive protein(s) with a molecular mass >30,kDa. Furthermore, the increase in MP production was not linked to an increase in apoptotic Wmyo. MP characterization showed that VEGF and FGF2 were present in MP and that endothelial and (myo)fibroblast cell growth can be stimulated by MP treatment. We postulated that MP production by myofibroblasts could modulate mesenchymal cell growth and angiogenesis during normal healing. J. Cell. Physiol. 225: 734,740, 2010. © 2010 Wiley-Liss, Inc. [source]


    Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006
    Chiara Bocelli-Tyndall
    Objective: To investigate whether mature human articular chondrocytes (AC) exhibit an antiproliferative effect on activated peripheral blood mononuclear cells (PBMC) and to compare this effect with other cells of mesenchymal origin. Methods: AC from healthy cadaveric cartilage were grown for different passages, in the absence (control) or presence of factors enhancing cell de-differentiation (transforming growth factor (TGF),1, fibroblast growth factor (FGF)-2, and platelet derived growth factor (PDGF)bb-TFP medium). Cell ability to suppress PBMC proliferation driven by anti-CD3 antibody was measured by tritiated thymidine uptake following incubation for 48 h at different PBMC:AC ratios and expressed as percent of residual proliferation (RP). AC antiproliferative effect was compared to that of control dermal fibroblasts (DF) and bone marrow stromal cells (BMSC). Results: AC exhibited a cell number-dependent antiproliferative effect. The strongest effect (up to 2% RP) was measured using the least expanded AC cultures. The use of TFP medium for AC expansion resulted in a significantly lower antiproliferative effect, in the range of that induced by BMSC (up to 18% RP). Also DF induced a marked antiproliferative effect (up to 11% RP). Conclusion: We report for the first time that human AC have a marked antiproliferative effect on anti-CD3 stimulated PBMC, which is reduced upon culture in medium-inducing extensive cell de-differentiation. These results reflect the immunosuppressive properties observed for other different mesenchymal cell types and raise the question of a potential common physiological role in local tissue protection. J. Cell. Physiol. 209: 732,734, 2006. © 2006 Wiley-Liss, Inc. [source]


    A preliminary examination of the role of NFAT 3 in human skin, cultured keratocytes and dermal fibroblasts

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 9 2010
    Wael I. Al-Daraji
    Background: Ciclosporin A (CsA) is widely utilized for the treatment of inflammatory skin diseases such as psoriasis. The therapeutic effects of CsA are thought to be mediated via its immunosuppressive action on infiltrating lymphocytes in skin lesions. CsA and tacrolimus block T cell activation by inhibiting the phosphatase calcineurin and preventing translocation from the cytoplasm to the nucleus of the transcription factor Nuclear Factor of Activated T cells (NFAT). Methods: RT-PCR and Western Analysis were used to investigate the presence of NFAT-3 mRNA and protein in human keratocytes. Tissue culture of human keratocytes and immunostaining of cells on coverslips and confocal microscopy were used to assess the degree of nuclear localisation of NFAT-3 in cultured cells. Keratome biopsies were taken from patients with psoriasis (lesional and non-lesional skin) and normal skin and immunohistochemistry was used to assess the NFAT-3 localisation in these biopsies using a well characterized anti-NFAT-3 antibody. Results: The NFAT-3 mRNA and protein expression was demonstrated using RT-PCR and Western blotting. The expression of NFAT-3 in human keratocytes and response to different agonists provides perhaps a unique opportunity to examine the regulation, subcellular localization and kinetics of translocation of different NFATs in primary cultured human cells. As with NFAT 1, NFAT 2 and recently NFAT 5, differentiation-promoting agents that increase intracellular calcium concentration induced nuclear translocation of NFAT-3 in cultured keratocytes but with different kinetics. Conclusion: These data provide the first evidence of that NFAT-3 is expressed in normal skin, psoriasis and that NFAT-3 functionally active in human keratocytes and that nuclear translocation of NFAT-3 in human skin cells has different kinetics than NFAT 1 suggesting that NFAT-3 may play an important role in regulation of keratocytes proliferation and differentiation at a different stage. Inhibition of this pathway in human epidermal keratocytes many account, in part for the therapeutic effects of CsA and tacrolimus in skin disorders such as psoriasis. Al-Daraji WI. A preliminary examination of the role of NFAT 3 in human skin, cultured keratocytes and dermal fibroblasts. [source]


    Epithelioid cell histiocytoma , histogenetic and kinetics analysis of dermal microvascular unit dendritic cell subpopulations

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 7 2003
    Jeffrey S. Silverman
    Background:, Epithelioid cell histiocytoma (ECH), also known as epithelioid fibrous histiocytoma, is a peculiar dermal tumor, which can mimic melanocytic, vascular, epithelial, or other histiocytic lesions. Thought to arise from dermal dendrocytes, most ECH contain approximately 50% FXIIIa+ histiocytic dendrocytes, but not all lesional cells express FXIIIa. A putative fibroblastic component has not been characterized. Methods:, We analyzed the differentiation and cell kinetics of dermal microvascular unit cells in 12 previously reported ECH using antibodies to FXIIIa, CD68 (KP1), CD34, CD117, CD31, smooth muscle actin, collagen type 1 aminopropeptide, and MIB-1, using single and double immunostains. Results:, In ECH, many variably sized CD34/CD31+ tumor vessels with actin+ myopericytes were surrounded by epithelioid-to-dendritic cells of three types. About 5,80% were dendritic histiocytes that expressed FXIIIa but not CD31 or KP1. Fibroblasts, in some cases showing mild nuclear pleomorphism, were usually collagen type 1+, but CD34 and actin, in 11/12 cases. One ,early' ECH had 40% CD34+ epithelioid cells, admixed with 50% FXIIIa+ histiocytes. Most ECH had about 2,20% KP1+, CD117+ mast cells. Mast cell numbers increased with FXIIIa+ histiocyte numbers and the intensity of FXIIIa expression. MIB-1/FXIIIa double-labeling showed only rare cycling histiocytes, with numerous cycling fibroblasts and endothelial cells. Conclusions:, Our findings support the impression that ECH is a vascular fibrous histiocytoma. The constituent cells appear to arise from the activation of resident microvascular CD34+ dermal fibroblasts and the accumulation of FXIIIa+ dendritic stromal assembly histiocytes. The CD34+ cells appear to differentiate toward collagenous fibrocytes in association with histiocytes and mast cells in forming collagenous stroma and vessels. ECH is a tumor composed of all requisite cell types consistent with the origin from the dermal microvascular unit. [source]


    Subculture affects the phenotypic expression of human periodontal ligament cells and their response to fibroblast growth factor-2 and bone morphogenetic protein-7,in vitro

    JOURNAL OF PERIODONTAL RESEARCH, Issue 5 2008
    S. Lossdörfer
    Background and Objective:, Although periodontal ligament cells display several osteoblastic traits, their phenotypic expression is still not well established. It remains a matter of debate whether they resemble a terminally differentiated cell type or an intermediate maturation state that potentially can be directed towards a fibroblastic or an osteoblastic phenotype. Material and Methods:, To explore the characteristics of periodontal ligament cells in greater detail, fourth-passage, sixth-passage and eighth-passage human periodontal ligament cells were cultured for up to 3 wk. Ki-67, alkaline phosphatase, osteocalcin, osteoprotegerin and receptor activator of nuclear factor-,B ligand (RANKL) mRNA expression was quantified by real-time polymerase chain reaction. Furthermore, the cellular response to fibroblast growth factor-2 and bone morphogenetic protein-7 was examined in first-passage and fourth-passage cells. Dermal fibroblasts (1BR.3.G) and osteoblast-like cells (MG63) served as reference cell lines. Results:, Proliferation decreased over time and was highest in fourth-passage cells. The expression of differentiation parameters, osteoprotegerin and RANKL increased with culture time and was higher in fourth-passage cells than in cells of later passages. The RANKL/osteoprotegerin ratio increased steadily until day 21. Administration of fibroblast growth factor-2 enhanced cell numbers in both passages, whereas alkaline phosphatase and osteocalcin production remained unchanged. By contrast, exposure of periodontal ligament cells to bone morphogenetic protein-7 resulted in a reduction of cell number in the first and fourth passages, whereas the production of alkaline phosphatase and osteocalcin was enhanced. In dermal fibroblasts, differentiation parameters did not respond to both stimuli. MG63 cells behaved similarly to periodontal ligament cells. Conclusion:, These results indicate that subculture affects the phenotypic expression of human periodontal ligament cells with respect to the characteristics that these cells share with osteoblasts. Furthermore, the periodontal ligament cell phenotype can be altered by fibroblastic and osteoblastic growth factors. [source]


    Continuous supply of TGF,3 via adenoviral vector promotes type I collagen and viability of fibroblasts in alginate hydrogel

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 7 2010
    Yongchang Yao
    Abstract In recent years, transforming growth factor-,3 (TGF,3) has interested more and more researchers with its competence in engineered histogenesis. In the present study we employed recombinant adenoviral vectors to deliver the constitutively active TGF,3 gene to human dermal fibroblasts, which could maintain the continuous secretion of TGF,3 from the cells. The expression of type I collagen in the Ad-TGF,3 group increased significantly in comparison with other three groups: Neg (cells without treatment of the adenovirus), Ad-null (cells with treatment of the adenovirus, without the inserted gene) and Ad-shRNA (cells with treatment of the adenovirus encoding shRNA specific for type I collagen). Additionally, we demonstrated that TGF,3 enhanced the expression of Smad4 while inhibiting that of MMP-9, thus promoting the collagen transcription via the Smad signal transduction pathway and restraining collagen degradation by MMP-9, which contributed to the increasing type I collagen expression level. As type I collagen mediates cell,material interactions by providing anchorage, the viability of encapsulated fibroblasts in Ad-TGF,3 group was significantly higher than that in other three groups. Accordingly, this approach forms an effective way to improve the compatibility of non-adhesive hydrogels containing anchorage-dependent cells. Copyright © 2010 John Wiley & Sons, Ltd. [source]