Dermal Cells (dermal + cell)

Distribution by Scientific Domains


Selected Abstracts


Dermal fibroblasts contribute to multiple tissues in the accessory limb model

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2010
Ayako Hirata
The accessory limb model has become an alternative model for performing investigations of limb regeneration in an amputated limb. In the accessory limb model, a complete patterned limb can be induced as a result of an interaction between the wound epithelium, a nerve and dermal fibroblasts in the skin. Studies should therefore focus on examining these tissues. To date, however, a study of cellular contributions in the accessory limb model has not been reported. By using green fluorescent protein (GFP) transgenic axolotl tissues, we can trace cell fate at the tissue level. Therefore, in the present study, we transgrafted GFP skin onto the limb of a non-GFP host and induced an accessory limb to investigate cellular contributions. Previous studies of cell contribution to amputation-induced blastemas have demonstrated that dermal cells are the progenitors of many of the early blastema cells, and that these cells contribute to regeneration of the connective tissues, including cartilage. In the present study, we have determined that this same population of progenitor cells responds to signaling from the nerve and wound epithelium in the absence of limb amputation to form an ectopic blastema and regenerate the connective tissues of an ectopic limb. Blastema cells from dermal fibroblasts, however, did not differentiate into either muscle or neural cells, and we conclude that dermal fibroblasts are dedifferentiated along its developmental lineage. [source]


The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization

EXPERIMENTAL DERMATOLOGY, Issue 2 2010
Manabu Ohyama
Please cite this paper as: The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Experimental Dermatology 2010; 19: 89,99. Abstract:, Hair follicle morphogenesis and regeneration occur by an extensive and collaborative crosstalk between epithelial and mesenchymal skin components. A series of pioneering studies, which revealed an indispensable role of follicular dermal papilla and dermal sheath cells in this crosstalk, has led workers in the field to study in detail the anatomical distribution, functional properties, and molecular signature of the trichogenic dermal cells. The purpose of this paper was to provide a practical summary of the development and recent advances in the study of trichogenic dermal cells. Following a short review of the relevant literature, the methods for isolating and culturing these cells are summarized. Next, the bioassays, both in vivo and in vitro, that enable the evaluation of trichogenic properties of tested dermal cells are described in detail. A list of trichogenic molecular markers identified by those assays is also provided. Finally, this methods review is completed by defining some of the major questions needing resolution. [source]


Plasticity of hair follicle dermal cells in wound healing and induction

EXPERIMENTAL DERMATOLOGY, Issue 2 2003
A. Gharzi
Abstract: The capacity of adult hair follicle dermal cells to participate in new follicle induction and regeneration, and to elicit responses from diverse epithelial partners, demonstrates a level of developmental promiscuity and influence far exceeding that of interfollicular fibroblasts. We have recently suggested that adult follicle dermal cells have extensive stem or progenitor cell activities, including an important role in skin dermal wound healing. Given that up to now tissue engineered skin equivalents have several deficiencies, including the absence of hair follicles, we investigated the capacity of follicle dermal cells to be incorporated into skin wounds; to form hair follicles in wound environments; and to create a hair follicle-derived skin equivalent. In our study, we implanted rat follicle dermal cells labelled with a vital dye into ear and body skin wounds. We found that they were incorporated into the new dermis in a manner similar to skin fibroblasts, but that lower follicle dermal sheath also assimilated into hair follicles. Using different combinations of follicle dermal cells and outer root sheath epithelial cells in punch biopsy wounds, we showed that new hair follicles were formed only with the inclusion of intact dermal papillae. Finally by combining follicle dermal sheath and outer root sheath cells in organotypic chambers, we created a skin equivalent with characteristic dermal and epidermal architecture and a normal basement membrane , the first skin to be produced entirely from hair follicle cells. These data support the hypothesis that follicle dermal cells may be important in wound healing and demonstrate their potential usefulness in human skin equivalents and skin substitutes. While we have made progress towards producing skin equivalents that contain follicles, we suggest that the failure of cultured dermal papilla cells to induce follicle formation in wounds illustrates the complex role the follicle dermis may play in skin. We believe that it demonstrates a genuine dichotomy of activity for follicle cells within skin. [source]


Calcium-dependent K current in plasma membranes of dermal cells of developing bean cotyledons

PLANT CELL & ENVIRONMENT, Issue 2 2004
W.-H. ZHANG
ABSTRACT In developing seeds of bean (Phaseolus vulgaris L.), phloem-imported assimilates (largely sucrose and potassium) are released from coats to seed apoplasm and subsequently retrieved by the dermal cell complexes of cotyledons. To investigate the mechanisms of K+ uptake by the cotyledons, protoplasts of dermal cell complexes were isolated and whole-cell currents across their plasma membranes were measured with the patch-clamp technique. A weakly rectified cation current displaying a voltage-dependent blockade by external Ca2+ and acidic pH, dominated the conductance of the protoplasts. The P haseolus v ulgaris Cotyledon Dermal-cell pH and Calcium-dependent Cation Conductance (Pv-CD-pHCaCC) was highly selective for K+ over Ca2+ and Cl,. For K+ current through Pv-CD-pHCaCC a sigmoid shaped current,voltage (I,V) curve was observed with negative conductance at voltages between ,200 and ,140 mV. This negative K+ conductance was Ca2+ dependent. With other univalent cations (Na+, Rb+, NH4+) the currents were smaller and were not Ca2+ dependent. Reversal potentials remained constant when external K+ was substituted with these cations, suggesting that Pv-CD-pHCaCC channels were non-selective. The Pv-CD-pHCaCC would provide a pathway for K+ and other univalent cation influx into developing cotyledons. These cation influxes could be co-ordinated with sucrose influx via pH and Ca2+dependence. [source]