Derived Clade (derived + clade)

Distribution by Scientific Domains


Selected Abstracts


Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae)

PLANT SPECIES BIOLOGY, Issue 1 2010
ATSUSHI KAWAKITA
Abstract The landmark discovery of obligate pollination mutualism between Glochidion plants and Epicephala moths has sparked increased interest in the pollination systems of Phyllantheae plants. In this paper I review current information on the natural history and evolutionary history of obligate pollination mutualism in Phyllantheae. Currently, an estimated >500 species are mutualistic with Epicephala moths that actively pollinate flowers and whose progeny feed on the resulting seeds. The Phyllantheae also includes species that are not mutualistic with Epicephala moths and are instead pollinated by bees and/or flies or ants. Phylogenetic analyses indicate that the mutualism evolved independently five times within Phyllantheae, whereas active pollination behavior, a key innovation in this mutualism, evolved once in Epicephala. Reversal of mutualism has occurred at least once in both partner lineages, involving a Breynia species that evolved an alternative pollination system and a derived clade of Epicephala that colonized ant-pollinated Phyllantheae hosts and thereby lost the pollinating habit. The plant,moth association is highly species specific, although a strict one-to-one assumption is not perfectly met. A comparison of plant and moth phylogenies suggests signs of parallel speciation, but partner switches have occurred repeatedly at a range of taxonomic levels. Overall, the remarkable species diversity and multiple originations of the mutualism provide excellent opportunities to address many important questions on mutualism and the coevolutionary process. Although research on the biology of the mutualism is still in its infancy, the Phyllantheae,Epicephala association holds promise as a new model system in ecology and evolutionary biology. [source]


Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology

CLADISTICS, Issue 3 2007
Claudia P. Arango
Higher-level phylogenetics of Pycnogonida has been discussed for many decades but scarcely studied from a cladistic perspective. Traditional taxonomic classifications are yet to be tested and affinities among families and genera are not well understood. Pycnogonida includes more than 1300 species described, but no systematic revisions at any level are available. Previous attempts to propose a phylogeny of the sea spiders were limited in characters and taxon sampling, therefore not allowing a robust test of relationships among lineages. Herein, we present the first comprehensive phylogenetic analysis of the Pycnogonida based on a total evidence approach and Direct Optimization. Sixty-three pycnogonid species representing all families including fossil taxa were included. For most of the extant taxa more than 6 kb of nuclear and mitochondrial DNA and 78 morphological characters were scored. The most parsimonious hypotheses obtained in equally weighted total evidence analyses show the two most diverse families Ammotheidae and Callipallenidae to be non-monophyletic. Austrodecidae + Colossendeidae + Pycnogonidae are in the basal most clade, these are morphologically diverse groups of species mostly found in cold waters. The raising of the family Pallenopsidae is supported, while Eurycyde and Ascorhynchus are definitely separated from Ammotheidae. The four fossil taxa are grouped within living Pycnogonida, instead of being an early derived clade. This phylogeny represents a solid framework to work towards the understanding of pycnogonid systematics, providing a data set and a testable hypothesis that indicate those clades that need severe testing, especially some of the deep nodes of the pycnogonid tree and the relationships of ammotheid and callipallenid forms. The inclusion of more rare taxa and additional sources of evidence are necessary for a phylogenetic classification of the Pycnogonida. © The Willi Hennig Society 2006. [source]


Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe

MOLECULAR ECOLOGY, Issue 2 2008
HASSAN RAJABI-MAHAM
Abstract Few genetic data document the postglacial history of the western house mouse, Mus musculus domesticus. We address this by studying a sample from the southeastern tip of the Fertile Crescent in the Iranian province of Ahvaz. Including other published and unpublished data from France, Germany, Italy, Bulgaria, Turkey and other places in Iran, altogether 321 mitochondrial D-loop sequences are simultaneously analysed. The patterns of coalescence obtained corroborate the classical proposal according to which the Fertile Crescent is where commensalism with humans has started in the Western Hemisphere, and from where the subspecies has expanded further west. Our data also clearly show that despite multiple colonisations and long-range transportation, there is still a rather high ,ST of 0.39. The original expansion signal is still recognisable, with two well-separated derived clades, allowing us to propose a hypothetical scenario in which expansion toward Europe and Asia Minor took at least two routes, tentatively termed the Mediterranean and the Bosphorus/Black Sea routes. This scenario resembles that of another domesticated species, the goat, and fits with the known progression of Neolithic culture. Given the concomitance of both phenomena around 12 000 years ago, we propose a recalibration of the D-loop mutation rate to a much faster tick of ~40% per site per million years (Myr). This value should be used for intrasubspecific polymorphism, while the interspecific rate in Mus is presently estimated at 6,10%/site/Myr. This is in keeping with the now well recognised fact that only a subfraction of segregating mutations go to fixation. [source]


Sound reasons for silence: why do molluscs not communicate acoustically?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
GEERAT J. VERMEIJ
Many adaptively beneficial states of form, behaviour and physiology are absent in large parts of the evolutionary tree of life. Although the causes of these absences can never be fully known, insights into the possibilities and limitations of adaptive evolution can be gained by examining the conditions that would be necessary for the forbidden phenotypes to evolve. Here, the case of acoustic communication in molluscs is considered. The production of sound as a warning to predators or as a means to attract mates is widespread among arthropods and vertebrates, both on land and in water, but is unknown among molluscs, even though many derived clades of gastropods and cephalopods are characterized by internal fertilization and by the evolution of long-distance visual and chemical signalling. Many molluscs possess suitable hard parts , shell, operculum and jaws , for producing sound, but most shell-bearing molluscs lack the agility or aggression necessary to cope with high-activity enemies attracted to an acoustic beacon. Their evolutionary background, arising from the generally passive adaptations of molluscs and other animals with low metabolic rates, prevents selection favouring communication by sound, and indeed favours silence. Several clades of shell-bearing gastropods and cephalopods were identified in which sound production has the greatest potential to arise or to be discovered. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 485,493. [source]