Home About us Contact | |||
Derivatization Procedure (derivatization + procedure)
Selected AbstractsAnalytical characterization of PEG polymers by MEKCELECTROPHORESIS, Issue 4 2010Marķa R. Plata Abstract Characterization of PEGs with average molecular masses of up to 2000 has been achieved using MEKC with UV detection. A rapid derivatization procedure with phenyl isocyanate using microwave radiation, in order to introduce chromophore groups in PEGs, has been developed involving a reaction time of 60,s. Different optimized conditions in accordance with the molecular weight have been studied to obtain the oligomer separation. The weight-average molecular mass the number-average molecular mass and the degree of polydispersity (molecular mass distribution) were calculated for the different PEGs obtaining similar results with those certified for standards. A good precision was obtained for characterizing the different oligomers. Ethylene glycol was used as the internal standard for the analysis of low-molecular-weight PEGs. The developed method was satisfactorily applied to the characterization of these polymers in several real samples, such as lubricant eye drops, toothpaste, tap water and eye make-up remover. [source] Dediazoniation of 1-naphthalenediazonium tetrafluoroborate in aqueous acid and in micellar solutionsINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 6 2008Carlos Bravo-Diaz We have measured the rates and product yields of dediazoniation of 1-naphthalenediazonium (1ND) tetrafluoroborate in the presence and absence of sodium dodecyl sulfate (SDS) micellar aggregates by employing a combination of UV,vis spectroscopy and high-performance liquid chromatography (HPLC) measurements. Kinetic data were obtained by a derivatization procedure with product yields were determined by HPLC. HPLC chromatograms show that in aqueous acid and in micellar solutions only one dediazoniation product is formed in significant quantities, 1-naphthol (NOH), and the observed rate constants (kobs) are the same when 1ND loss is monitored spectrometrically and when NOH formation is monitored by HPLC. Activation parameters were obtained both in the presence and absence of SDS micellar aggregates. In both the systems, the enthalpies of activation are high and the entropies of activation are positive. The enthalpy of activation in the absence of SDS is very similar to that in the presence of SDS micelles, but the entropy of activation is lower by a factor of 4. As a consequence, SDS micelles speed up the thermal decomposition of 1ND and increase kobs by a factor of 1.5 when [SDS] = 0.02 M. In contrast, results obtained in the presence of complexing systems such as crown ethers and polyethers show significant stabilization of the parent arenediazonium ions. Kinetic and HPLC data are consistent with the heterolytic DN + AN mechanism that involves the rate-determining fragmentation of the arenediazonium ion into a very reactive phenyl cation that reacts competitively with available nucleophiles. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 301,309, 2008 [source] Charge derivatization by 4-sulfophenyl isothiocyanate enhances peptide sequencing by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2003Lyuben N. Marekov Abstract High-sensitivity, rapid identification of proteins in proteomic studies normally uses a combination of one- or two-dimensional electrophoresis together with mass spectrometry. The simplicity and sensitivity of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) have increased its application in recent years. The most common method of ,peptide fingerprinting' often may not provide robust identification. Normally additional sequence information by post-source decay (PSD) MALDI-TOFMS provides additional constraints for database searches to achieve highly confident results. Here we describe a derivatization procedure to facilitate the acquisition of such sequence information. Peptide digests from a skin-expressed protein were modified with 4-sulfophenyl isothiocyanate. The resulting peptides carry a fixed negative charge at the N-terminal end and the resulting PSD spectrum is dominated by C-terminal y-type ions. The sequence information in most cases can be obtained manually or with simple programming tools. Methods of optimizing the procedure and increasing the sensitivity are discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source] Recent advances in mycotoxin determination in food and feed by hyphenated chromatographic techniques/mass spectrometryMASS SPECTROMETRY REVIEWS, Issue 1 2006Stefano Sforza Abstract Mycotoxins are fungal toxins produced by molds, which occur universally in food and feed derivatives, and are produced under certain environmental conditions in the field before harvest, post-harvest, during storage, processing, and feeding. Mycotoxin contamination is one of the most relevant and worrisome problem concerning food and feed safety because it can cause a variety of toxic acute and chronic effects in human and animals. In this review we report the use of mass spectrometry in connection with chromatographic techniques for mycotoxin determination by considering separately the most diffuse class of mycotoxins: patulin, aflatoxins, ochratoxin A, zearalenone, trichothecenes, and fumonisins. Although the selectivity of mass spectrometry is unchallenged if compared to common GC and LC detection methods, accuracy, precision, and sensitivity may be extremely variable concerning the different mycotoxins, matrices, and instruments. The sensitivity issue may be a real problem in the case of LC/MS, where the response can be very different for the different ionization techniques (ESI, APCI, APPI). Therefore, when other detection methods (such as fluorescence or UV absorbance) can be used for the quantitative determination, LC/MS appears to be only an outstanding confirmatory technique. In contrast, when the toxins are not volatile and do not bear suitable chromophores or fluorophores, LC/MS appears to be the unique method to perform quantitative and qualitative analyses without requiring any derivatization procedure. The problem of exact quantitative determination in GC/MS and LC/MS methods is particularly important for mycotoxin determination in food, given the high variability of the matrices, and can be solved only by the use of isotopically labeled internal standards or by the use of ionization interfaces able to lower matrix effects and ion suppressions. When the problems linked to inconstant ionization and matrix effects will be solved, only MS detectors will allow to simplify more and more the sample preparation procedures and to avoid clean-up procedures, making feasible low-cost, high-throughput determination of mycotoxins in many different food matrices. © 2005 Wiley Periodicals, Inc. [source] Quantitative determination of perfluorooctanoic acid ammonium salt in human serum by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2002Cristina Sottani A sensitive, specific, accurate and reproducible analytical method was developed and validated to quantify perfluorooctanoic acid (PFOA) in human serum. After initial extraction with an ion-paring reagent, the procedure for quantifying PFOA is based on high-performance liquid chromatography (HPLC) interfaced to negative ion tandem mass spectrometry, operating in selected ion monitoring mode. The retention times of PFOA and its internal standard (D,L-malic acid) were 5.85 and 1.70,min, respectively. The assay was linear over the range 0,500,ng/mL, with a lower limit of quantification (LOQ) of 25,ng/mL, and with a coefficient of variation (CV) of 7.3%. The lower limit of detection (LOD) was assessed as 10,ng/mL. The overall precision and accuracy were assessed on three different days. The within- and between-day precision was ,9.7 and 6.8%, respectively, and the accuracy was in the range 96,114%. The mean extracted recovery assessed at three different concentrations (100, 250, and 500,ng/mL) was always more than 85%. With this method no derivatization procedure was needed, thus avoiding possible thermal and chemical decomposition reactions of PFOA. The assay was applied to quantify perfluorooctanoic acid in serum from employees exposed to fluorochemicals commonly used in industrial applications for polymer production. The quantitative results for PFOA blood levels were found to vary between 100 and 982,ng/mL. Copyright © 2002 John Wiley & Sons, Ltd. [source] A rational approach to heavy-atom derivative screeningACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2010M. Gordon Joyce Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasing power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the `classical' heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing. [source] HPLC determination of acidic d -amino acids and their N -methyl derivatives in biological tissuesBIOMEDICAL CHROMATOGRAPHY, Issue 6 2009Mara Tsesarskaia Abstract d -Aspartate (d -Asp) and N -methyl- d -aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates, where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N -methyl- d -glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o -phthaldialdehyde (OPA) to remove primary amino acids that interfere with the detection of NMDA and NMDG. We report here a one-step derivatization procedure with the chiral reagent N-, -(5-fluoro-2,4-dinitrophenyl)-(d or l)-valine amide, FDNP-Val-NH2, a close analog of Marfey's reagent but with better resolution and higher molar absorptivity. The diastereomers formed were separated by HPLC on an ODS-Hypersil column eluted with TFA/water,TFA/MeCN. UV absorption at 340 nm permitted detection levels as low as 5,10 pmol. d -Asp, NMDA and NMDG peaks were not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA was not required. This method is highly reliable and fast (less than 40 min HPLC run). Using this method, we detected d -Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. Copyright © 2009 John Wiley & Sons, Ltd. [source] Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma,BIOMEDICAL CHROMATOGRAPHY, Issue 7 2004Wilson Z. Shou Abstract An ultra-sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the analysis of oral contraceptive ethinyl estradiol (EE) was developed and validated over the curve range of 2.5,500 pg/mL using 1 mL of human plasma sample. Ethinyl estradiol and the internal standard, ethinyl estradiol tetra-deuterated (EE-d4), were extracted from the plasma matrix with methyl t -butyl ether, derivatized with dansyl chloride and then back-extracted into hexane. The hexane phase was evaporated to dryness, reconstituted and injected onto the LC/MS/MS system. The chromatographic separation was achieved on a Luna C18 column (50 × 2 mm, 5 µm) with an isocratic mobile phase of 20:80 (v/v) water:acetonitrile with 1% formic acid. The of,ine derivatization procedure introduced the easily ionizable tertiary amine function group to EE. This greatly improved analyte sensitivity in electrospray ionization and enabled us to achieve the desired lower limit of quantitation at 2.5 pg/mL. This high sensitivity method can be used for therapeutic drug monitoring or supporting bio-equivalence and drug,drug interaction studies in human subjects. Copyright © 2004 John Wiley & Sons, Ltd. [source] Fast chiral separation of drugs using columns packed with sub-2 ,m particles and ultra-high pressureCHIRALITY, Issue 3 2010Davy Guillarme Abstract The use of columns packed with sub-2 ,m particles in liquid chromatography with very high pressure conditions (known as UHPLC) was investigated for the fast enantioseparation of drugs. Two different procedures were evaluated and compared using amphetamine derivatives and ,-blockers as model compounds. In one case, cyclodextrins (CD) were directly added to the mobile phase and chiral separations were carried out in less than 5 min. However, this strategy suffered from several drawbacks linked to column lifetime and low chromatographic efficiencies. In the other case, the analysis of enantiomers was carried out after a derivatization procedure using two different reagents, 2,3,4-tri-O-acetyl-,- D -arabinopyranosyl isothiocyanate (AITC) and N -,-(2,4-dinitro-5-fluorophenyl)- L -alaninamide (Marfey's reagent). Separation of several amphetamine derivatives contained within the same sample was achieved in 2,5 min with high efficiency and selectivity. The proposed approach was also successfully applied to the enantiomeric purity determination of (+)-(S)-amphetamine and (+)-(S)-methamphetamine. Similar results were obtained with ,-blockers, and the separation of 10 enantiomers was carried out in less than 3 min, whereas the individual separation of several ,-blocker enantiomers was performed in 1 min or less. Chirality, 2010. © 2009 Wiley-Liss, Inc. [source] On-line sample preconcentration with chemical derivatization of bacterial biomarkers by capillary electrophoresis: A dual strategy for integrating sample pretreatment with chemical analysisELECTROPHORESIS, Issue 21 2005Adam S. Ptolemy Abstract Simple, selective yet sensitive methods to quantify low-abundance bacterial biomarkers derived from complex samples are required in clinical, biological, and environmental applications. In this report, a new strategy to integrate sample pretreatment with chemical analysis is investigated using on-line preconcentration with chemical derivatization by CE and UV detection. Single-step enantioselective analysis of muramic acid (MA) and diaminopimelic acid (DAP) was achieved by CE via sample enrichment by dynamic pH junction with ortho -phthalaldehyde/N -acetyl- L -cysteine labeling directly in-capillary. The optimized method resulted in up to a 100-fold enhancement in concentration sensitivity compared to conventional off-line derivatization procedures. The method was also applied toward the detection of micromolar levels of MA and DAP excreted in the extracellular medium of Escherichia coli bacterial cell cultures. On-line preconcentration with chemical derivatization by CE represents a unique approach for conducting rapid, sensitive, and high-throughput analyses of other classes of amino acid and amino sugar metabolites with reduced sample handling, where the capillary functions simultaneously as a concentrator, microreactor, and chiral selector. [source] Derivatization of inorganic ions in capillary electrophoresisELECTROPHORESIS, Issue 12-13 2003Audrius PadarauskasArticle first published online: 8 JUL 200 Abstract This review gives a short overview of the main approaches to the derivatization of inorganic ions in capillary electrophoresis (CE) with emphasis on the most recent works. Various derivatization procedures and detection methods are discussed. A brief account of their advantages and limitations is given. More specific areas such as microchip CE, simultaneous separation of anions and cations, and speciation analysis are also briefly discussed. [source] Increased vigabatrin entry into the brain by polysorbate 80 and sodium caprateJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2001D. Dimitrijevic The effects of a non-ionic surfactant, polysorbate 80, and the sodium salt of the saturated fatty acid, sodium caprate (C10), as potential brain absorption enhancers for vigabatrin were studied. Vigabatrin is an enzyme-activated irreversible inhibitor of ,-aminobutyric acid (GABA) transaminase that increases brain and cerebrospinal GABA concentrations in animals and man. Before intravenous administration, a range of concentrations of the surfactants were tested using erythrocyte lysis or the red blood cell lysis test to establish the non-toxic concentration range. Vigabatrin was dissolved in 0.1% polysorbate 80 and 0.1% sodium caprate and administered intravenously in doses of 4 mL kg,1 to male Wistar rats (230,250 g; n = 3). Rats were killed 2 h after drug and surfactant administration and the brains were immediately removed and homogenized in 0.4m perchloric acid. Selected ion monitoring electrospray mass spectrometry was used to determine the concentration of vigabatrin and GABA directly from the perchloric acid extract of the rat brain. This method was developed to increase the speed and efficiency of the analysis by removing the need for complex extraction and derivatization procedures while retaining the specificity of the mass spectrometer as a detector. The stability of both vigabatrin and GABA in perchloric acid was established by monitoring their pseudo molecular ions in standard solutions at timed intervals over 24 h. Although the detection level for vigabatrin and GABA was at least 50 pg, only GABA was detected in rat brain. Vigabatrin caused a small increase in whole brain GABA. However, GABA levels were higher in the samples with vigabatrin + enhancer than in the samples where vigabatrin alone was administered. One-way analysis of variance indicated a significant effect of the surfactants on GABA levels (F (5,17) = 11.86, P < 0.01) and vigabatrin absorption was presumed. The rectal temperature of the rats is lowered by the presence of vigabatrin in the brain. Vigabatrin alone decreased rectal temperature by 6%. When given with either polysorbate 80 or sodium caprate, the extent of temperature lowering was significantly greater (P < 0.001). There was no significant difference after 2 h between polysorbate 80 + vigabatrin, and sodium caprate + vigabatrin. [source] |