Home About us Contact | |||
Degrading Enzymes (degrading + enzyme)
Kinds of Degrading Enzymes Selected AbstractsEffect of Cell Wall Degrading Enzymes on In Vitro Carotene Accessibility in Lactic Acid Fermented Carrot BeverageJOURNAL OF FOOD SCIENCE, Issue 2 2004V. Díaz ABSTRACT: Carrot purées with different particle size were prepared from fresh carrots using 2 different food processors. The purées were fermented with lactic acid bacteria (Lactobacillus plantarum) with and without addition of cell wall degrading enzymes (Pectinex® Ultra SP-L and CellubrixTM L). The bioaccessibility of carotenes was estimated using an in vitro digestion method. In carrots processed to a particle size <1.5 mm, the in vitro ,-carotene accessibility was 46% and neither fermentation nor addition of cell wall-degrading enzymes had any further effect on the in vitro accessibility. In carrot purées with a coarser particle size, the in vitro ,-carotene accessibility was 18%; that significantly increased by adding high amounts of cellulases or pectinases or a combination of the enzymes either in low or high amounts. The improved accessibility was correlated with reduced particle size of the carrot purée. [source] SYMPOSIUM: Clearance of A, from the Brain in Alzheimer's Disease: A,-Degrading Enzymes in Alzheimer's DiseaseBRAIN PATHOLOGY, Issue 2 2008James Scott Miners Abstract In Alzheimer's disease (AD) A, accumulates because of imbalance between the production of A, and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of A, is partly, if not in some cases solely, because of defects in its removal,mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading A,. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced A,-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading A,in vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOE,4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to A, plaque load. Up-regulation of some A,-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other A,-clearance pathways, reductions in the activity of particular A,-degrading enzymes may become critical, leading to the development of AD and CAA. [source] Requirement of cannabinoid CB1 receptors in cortical pyramidal neurons for appropriate development of corticothalamic and thalamocortical projectionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2010Chia-Shan Wu Abstract A role for endocannabinoid signaling in neuronal morphogenesis as the brain develops has recently been suggested. Here we used the developing somatosensory circuit as a model system to examine the role of endocannabinoid signaling in neural circuit formation. We first show that a deficiency in cannabinoid receptor type 1 (CB1R), but not G-protein-coupled receptor 55 (GPR55), leads to aberrant fasciculation and pathfinding in both corticothalamic and thalamocortical axons despite normal target recognition. Next, we localized CB1R expression to developing corticothalamic projections and found little if any expression in thalamocortical axons, using a newly established reporter mouse expressing GFP in thalamocortical projections. A similar thalamocortical projection phenotype was observed following removal of CB1R from cortical principal neurons, clearly demonstrating that CB1R in corticothalamic axons was required to instruct their complimentary connections, thalamocortical axons. When reciprocal thalamic and cortical connections meet, CB1R-containing corticothalamic axons are intimately associated with elongating thalamocortical projections containing DGL,, a 2-arachidonoyl glycerol (2-AG) synthesizing enzyme. Thus, 2-AG produced in thalamocortical axons and acting at CB1Rs on corticothalamic axons is likely to modulate axonal patterning. The presence of monoglyceride lipase, a 2-AG degrading enzyme, in both thalamocortical and corticothalamic tracts probably serves to restrict 2-AG availability. In summary, our study provides strong evidence that endocannabinoids are a modulator for the proposed ,handshake' interactions between corticothalamic and thalamocortical axons, especially for fasciculation. These findings are important in understanding the long-term consequences of alterations in CB1R activity during development, a potential etiology for the mental health disorders linked to prenatal cannabis use. [source] Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytesJOURNAL OF NEUROCHEMISTRY, Issue 1 2008Eric Kampmann Abstract Prostanoids are important mediators of inflammation and pain signaling. Although it is now well accepted that astrocytes participate in inflammatory reactions in the CNS, the molecular regulation of this activity is still largely unknown. Specifically, the regulation of prostanoid synthesis by this type of glia remains to be resolved. Recent evidence suggests that the transcriptional regulator retinoic acid (RA) is involved in regulation of the immune response. We have investigated the expression pattern of the enzymes that catalyze prostanoid and leukotriene synthesis in cultured cortical astrocytes, their stimulation by lipopolysaccharides (LPS) and their regulation by RA. The data indicate that astrocytes are an important source of prostaglandins (PGs) and that RA reduces their inflammatory biosynthesis. LPS treatment induced the expression of enzymes for the production of arachidonic acid and PGs but caused down-regulation of a PG degrading enzyme and of leukotriene synthesizing enzymes that compete with PG synthesis. Consequently, the secretion of the PGE2 was highly increased after LPS exposure. RA counteracted the inflammatory regulation of cyclooxygenase (COX)-2 mRNA and protein in astrocytes and thereby reduced the synthesis of PGE2 by approximately 60%. In the absence of LPS, RA enhanced the expression of COX-1 mRNA. In conclusion, RA might be effective in suppressing inflammatory processes in the brain by inhibiting PG synthesis. [source] Lack of neprilysin suffices to generate murine amyloid-like deposits in the brain and behavioral deficit in vivoJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006Rime Madani Abstract Accumulation of the ,-amyloid peptide (A,) in the brain is a major pathological hallmark of Alzheimer's disease (AD), leading to synaptic dysfunction, neuronal death, and memory impairment. The levels of neprilysin, a major A,-degrading enzyme, are decreased in AD brains and during aging. Because neprilysin cleaves A, in vivo, its down-regulation may contribute to the pathophysiology of AD. The aim of this study was to assess the consequences of neprilysin deficiency on accumulation of murine A, in brains and associated pathologies in vivo by investigating neprilysin-deficient mice on biochemical, morphological, and behavioral levels. Aged neprilysin-deficient mice expressed physiological amyloid precursor protein (APP) levels and exhibited elevated brain A, concentrations and amyloid-like deposits in addition to signs of neuronal degeneration in their brains. Behaviorally, neprilysin-deficient mice acquired a significantly weaker conditioned taste aversion that extinguished faster than the aversion of age-matched controls. Our data establish that, under physiological APP expression levels, neprilysin deficiency is associated with increased A, accumulation in the brain and leads to deposition of amyloid-like structures in vivo as well as with signs of AD-like pathology and with behavioral deficits. © 2006 Wiley-Liss, Inc. [source] Kinetic studies on aminopeptidase M-mediated degradation of human hemorphin LVV-H7 and its N -terminally truncated productsJOURNAL OF PEPTIDE SCIENCE, Issue 7 2008Harald John Abstract The human hemorphin LVV-H7 belongs to the class of µ-opiod receptor-binding peptides, which also exhibits significant affinity to insulin-regulated aminopeptidase (IRAP) thereby affecting IRAP inhibition. The inhibitory potency towards IRAP is of pharmaceutical interest for the treatment of Alzheimer's disease. Consecutive N -terminal cleavage of the first two amino acid residues of LVV-H7 affects a drastic increase of the binding affinity (V-H7) but ultimately leads to its complete abolition after cleavage of the next amino acid residue (H7). Therefore, we investigated LVV-H7 truncation by aminopeptidase M (AP-M) identified as a LVV-H7 degrading enzyme potentially regulating hemorphin activity towards IRAP in vivo. Using a selective quantitative multi-component capillary zone electrophoretic method (CZE-UV), we analyzed the AP-M-mediated subsequent proteolysis of the hemorphins LVV-H7 (L32 -F41), VV-H7 (V33 -F41), and V-H7 (V34 -F41) in vitro. Incubations were carried out with synthetic hemorphins applied as single substrates or in combination. Maximum velocities (Vmax), catalytic constants (turnover numbers, kcat), and specific enzyme activities (EA) were calculated. L32 cleavage from LVV-H7 happens more than two-times faster (kcat: 140 min,1 ± 9%, EA: 1.0 U/mg ± 9%) than V33 cleavage from VV-H7 (kcat: 61 min,1 ± 10%, EA: 0.43 U/mg ± 10%) or V32 deletion from V-H7 (kcat: 62 min,1 ± 8%, EA: 0.46 U/mg ± 8%). In contrast, we showed that H7 (Y35 -F41) was neither degraded by porcine AP-M nor did it act as an inhibitor for this enzyme. Determined turnover numbers were in the same dimension as those reported for dynorphin degradation. This is the first time that AP-M-mediated truncation of natural underivatized LVV-H7 and its physiological metabolites was analyzed to determine kinetic parameters useful for understanding hemorphin processing and designing hemorphin-derived drug candidates. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source] Shifts in metabolic parameters surrounding glucose homoeostasis resulting from tricyclic antidepressant therapy: implications of insulin resistance?JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2007W. Chadwick This study displayed the physiological effects the tricyclic antidepressants amitriptyline or trimipramine have on glucose homoeostasis in male Wistar rats. An insulin secreting cell line (INS-1) was also used to determine effects tricyclic antidepressants have on insulin secretion and insulin displacement. Thirty rats each received a 1 mg kg,1 dose of amitriptyline or trimipramine for a period of 14 weeks; another 14 rats served as the control group. Blood glucose, serum insulin and muscle and liver glycogen levels were determined. Kidney, liver and muscle insulin degradation was measured and compared with insulin degrading enzyme concentrations in the latter two tissues. INS-1 cells were used to determine the effect 1,M amitriptyline has on insulin secretion. Displacement studies for [3H]glibenclamide by amitriptyline or trimipramine were undertaken on INS-1 cells. A significant increase in blood glucose (P < 0.01) was found for both test groups after 6 and 14 weeks of receiving the medication, which may be related to a significant decrease in liver and muscle glycogen levels (P < 0.001). Serum insulin levels remained unchanged, although a significant increase in insulin degradation was observed in the muscle, liver and kidney, which may be related to a significant increase in insulin degrading enzyme (P < 0.001) that was found. A significant increase in insulin secretion was observed for the INS-1 cells treated with amitriptyline, although no significant displacement for the [3H]glibenclamide was evident for amitriptyline or trimipramine. The significant alterations in glucose homoeostasis observed, as well as the significant changes associated with insulin secretion and degradation associated with amitriptyline or trimipramine treatment, imply that prolonged use of these medicines may lead to insulin resistance and full blown diabetes. [source] Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neuronesNEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2009W. Boesmans Abstract, Cannabinoid (CB) receptors are expressed in the enteric nervous system (ENS) and CB1 receptor activity slows down motility and delays gastric emptying. This receptor system has become an important target for GI-related drug development such as in obesity treatment. The aim of the study was to investigate how CB1 ligands and antagonists affect ongoing activity in enteric neurone networks, modulate synaptic vesicle cycling and influence mitochondrial transport in nerve processes. Primary cultures of guinea-pig myenteric neurones were loaded with different fluorescent markers: Fluo-4 to measure network activity, FM1-43 to image synaptic vesicles and Mitotracker green to label mitochondria. Synaptic vesicle cluster density was assessed by immunohistochemistry and expression of CB1 receptors was confirmed by RT-PCR. Spontaneous network activity, displayed by both excitatory and inhibitory neurones, was significantly increased by CB1 receptor antagonists (AM-251 and SR141716), abolished by CB1 activation (methanandamide, mAEA) and reduced by two different inhibitors (arachidonylamide serotonin, AA-5HT and URB597) of fatty acid amide hydrolase. Antagonists reduced the number of synaptic vesicles that were recycled during an electrical stimulus. CB1 agonists (mAEA and WIN55,212) reduced and antagonists enhanced the fraction of transported mitochondria in enteric nerve fibres. We found immunohistochemical evidence for an enhancement of synaptophysin-positive release sites with SR141716, while WIN55,212 caused a reduction. The opposite effects of agonists and antagonists suggest that enteric nerve signalling is under the permanent control of CB1 receptor activity. Using inhibitors of the endocannabinoid degrading enzyme, we were able to show there is endogenous production of a CB ligand in the ENS. [source] Platelet-activating factor and human meningiomasNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 6 2006Y. Denizot Meningiomas are common primary intracranial tumours. Platelet-activating factor (PAF) is an inflammatory and angiogenic lipid mediator involved in several types of cancer. The presence of PAF receptor (PAF-R) transcripts, the levels of PAF, the phospholipase A2 activity (PLA2, the enzymatic activity implicated in PAF formation) and the PAF acetylhydrolase activity (AHA, the PAF degrading enzyme) were investigated in 49 human meningiomas. PAF-R transcripts, PAF, PLA2 and AHA were detected in meningiomas. However, their levels did not correlate with biological parameters such as the tumour grade, the presence of associated oedema, necrosis, mitotic index as well as intensity of the neovascularization and chronic inflammatory response. In conclusion, PAF is present in meningiomas where it might act on tumour growth by altering the local angiogenic and/or cytokine networks as previously suggested for human breast and colorectal cancer. [source] Greasing the wheels of A, clearance in Alzheimer's Disease: The role of lipids and apolipoprotein EBIOFACTORS, Issue 3 2009Jianjia Fan Abstract Although apolipoprotein E (apoE) is the most common genetic risk factor for Alzheimer's Disease (AD), how apoE participates in AD pathogenesis remains incompletely understood. ApoE is also the major carrier of lipids in the brain. Here, we review studies showing that the lipidation status of apoE influences the metabolism of A, peptides, which accumulate as amyloid deposits in the neural parenchyma and cerebrovasculature. One effect of apoE is to inhibit the transport of A, across the blood-brain-barrier (BBB), particularly when apoE is lipidated. A second effect is to facilitate the proteolytic degradation of A, by neprilysin and insulin degrading enzyme (IDE), which is enhanced when apoE is lipidated. We also describe how apoE becomes lipidated and how this impacts A, metabolism. Specifically, genetic loss of the cholesterol transporter ABCA1 impairs apoE lipidation and promotes amyloid deposition in AD mouse models. ABCA1 catalyses the ATP-dependent transport of cholesterol and phospholipids from the plasma membrane to lipid-free apolipoproteins including apoE. Conversely, selective overexpression of ABCA1 increases apoE lipidation in the central nervous system (CNS) and eliminates the formation of amyloid plaques in vivo. Deficiency of Liver-X-Receptors (LXRs), transcription factors that stimulate ABCA1 and apoE expression, exacerbates AD pathogenesis in vivo, whereas treatment of AD mice with synthetic LXR agonists reduces amyloid load and improves cognitive performance. These studies provide new insights into the mechanisms by which apoE affects A, metabolism, and offer opportunities to develop novel therapeutic approaches to reduce the leading cause of dementia in the elderly. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source] Sclerotinia sclerotiorum: When "to be or not to be" a pathogen?FEMS MICROBIOLOGY LETTERS, Issue 2 2005Dwayne D. Hegedus Abstract Sclerotinia sclerotiorum is unusual among necrotrophic pathogens in its requirement for senescent tissues to establish an infection and to complete the life cycle. A model for the infection process has emerged whereby the pathogenic phase is bounded by saprophytic phases; the distinction being that the dead tissues in the latter are generated by the actions of the pathogen. Initial colonization of dead tissue provides nutrients for pathogen establishment and resources to infect healthy plant tissue. The early pathogenicity stage involves production of oxalic acid and the expression of cell wall degrading enzymes, such as specific isoforms of polygalacturonase (SSPG1) and protease (ASPS), at the expanding edge of the lesion. Such activities release small molecules (oligo-galacturonides and peptides) that serve to induce the expression of a second wave of degradative enzymes that collectively bring about the total dissolution of the plant tissue. Oxalic acid and other metabolites and enzymes suppress host defences during the pathogenic phase, while other components initiate host cell death responses leading to the formation of necrotic tissue. The pathogenic phase is followed by a second saprophytic phase, the transition to which is effected by declining cAMP levels as glucose becomes available and further hydrolytic enzyme synthesis is repressed. Low cAMP levels and an acidic environment generated by the secretion of oxalic acid promote sclerotial development and completion of the life cycle. This review brings together histological, biochemical and molecular information gathered over the past several decades to develop this tri-phasic model for infection. In several instances, studies with Botrytis species are drawn upon for supplemental and supportive evidence for this model. In this process, we attempt to outline how the interplay between glucose levels, cAMP and ambient pH serves to coordinate the transition between these phases and dictate the biochemical and developmental events that define them. [source] Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiaeINSECT MOLECULAR BIOLOGY, Issue 6 2005H. Biessmann Abstract Female Anopheles gambiae mosquitoes respond to odours emitted from humans in order to find a blood meal, while males are nectar feeders. This complex behaviour is controlled at several levels, but is probably initiated by the interaction of various molecules in the antennal sensilla. Important molecules in the early odour recognition events include odourant binding proteins (OBPs), which may be involved in odour molecule transport, odourant receptors (ORs) that are expressed in the chemosensory neurones and odour degrading enzymes (ODEs). To obtain a better understanding of the expression patterns of genes that may be involved in host odour reception in females, we generated a custom microarray to study their steady state mRNA levels in chemosensory tissues, antennae and palps. These results were supported by quantitative RT PCR. Our study detected several OBPs that are expressed at significantly higher levels in antennae and palps of females vs. males, while others showed the opposite expression pattern. Most OBPs are slightly down-regulated 24 h after blood feeding, but some, especially those with higher expression levels in males, are up-regulated in blood-fed females, suggesting a shift in blood-fed females from human host seeking to nectar feeding. [source] Systemic Regulation of Distraction Osteogenesis: A Cascade of Biochemical Factors,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2002S. Weiss M.D. Abstract This study investigates the systemic biochemical regulation of fracture healing in distraction osteogenesis compared with rigid osteotomy in a prospective in vivo study in humans. To further clarify the influence of mechanical strain on the regulation of bone formation, bone growth factors (insulin-like growth factor [IGF] I, IGF binding protein [IGFBP] 3, transforming growth factor [TGF] ,1, and basic FGF [bFGF]), bone matrix degrading enzymes (matrix-metalloproteinases [MMPs] 1, 2, and 3), human growth hormone (hGH), and bone formation markers (ALP, bone-specific ALP [BAP], and osteocalcin [OC]) have been analyzed in serum samples from 10 patients in each group pre- and postoperatively. In the distraction group, a significant postoperative increase in MMP-1, bFGF, ALP, and BAP could be observed during the lengthening and the consolidation period when compared with the baseline levels. Osteotomy fracture healing without the traction stimulus failed to induce a corresponding increase in these factors. In addition, comparison of both groups revealed a significantly higher increase in TGF-,1, IGF-I, IGFBP-3, and hGH in the lengthening group during the distraction period, indicating key regulatory functions in mechanotransduction. The time courses of changes in MMP-1, bone growth factors (TGF-,1 and bFGF), and hGH, respectively, correlated significantly during the lengthening phase, indicating common regulatory pathways for these factors in distraction osteogenesis. Significant correlation between the osteoblastic marker BAP, TGF-,1, and bFGF suggests strain-activated osteoblastic cells as a major source of systemically increased bone growth factors during callus distraction. The systemic increase in bFGF and MMP-1 might reflect an increased local stimulation of angiogenesis during distraction osteogenesis. [source] Development of selective tolerance to interleukin-1, by human chondrocytes in vitro,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002Greta M. Lee Interleukin-1 induces release of NO and PGE2 and production of matrix degrading enzymes in chondrocytes. In osteoarthritis (OA), IL-1 continually, or episodically, acts on chondrocytes in a paracrine and autocrine manner. Human chondrocytes in chondron pellet culture were treated chronically (up to 14 days) with IL-1,. Chondrons from OA articular cartilage were cultured for 3 weeks before treatment with IL-1, (0.05,10 ng/ml) for an additional 2 weeks. Spontaneous release of NO and IL-1, declined over the pretreatment period. In response to IL-1, (0.1 ng/ml), NO and PGE2 release was maximal on Day 2 or 3 and then declined to near basal level by Day 14. Synthesis was recovered by addition of 1 ng/ml IL-1, on Day 11. Expression of inducible nitric oxide synthase (iNOS), detected by immunofluorescence, was elevated on Day 2 and declined through Day 14, which coordinated with the pattern of NO release. On the other hand, IL-1,-induced MMP-13 synthesis was elevated on Day 3, declined on Day 5, and then increased again through Day 14. IL-1, increased glucose consumption and lactate production throughout the treatment. IL-1, stimulated proteoglycan degradation in the early days and inhibited proteoglycan synthesis through Day 14. Chondron pellet cultures from non-OA cartilage released the same amount of NO but produced less PGE2 and MMP-13 in response to IL-1, than OA cultures. Like the OA, IL-1,-induced NO and PGE2 release decreased over time. In conclusion, with prolonged exposure to IL-1,, human chondrocytes develop selective tolerance involving NO and PGE2 release but not MMP-13 production, metabolic activity, or matrix metabolism. © 2002 Wiley-Liss, Inc. [source] Variation of Fructooligosaccharides and their Metabolizing Enzymes in Onion Bulb (Allium cepa L. cv. Tenshin) During Long-term StorageJOURNAL OF FOOD SCIENCE, Issue 3 2005Noureddine Benkeblia ABSTRACT: The objective of this study was to assess the status of fructooligosaccharides (FOS) in onion bulbs (Allium cepa L. cv. Tenshin) and their metabolizing-enzymes,1-fructoexohydrolase (1-FEH), 1-kestose hydrolyzing enzyme (1-KH), fructan:fructan 1F -fructosyltransferase (1-FFT) and fructan:fructan 6G -fructosyltransferase (6G-FFT),during storage at 15°C. Fructose varies slightly, whereas 1-kestose peaked after 6 wk and then decreased progressively during the last 18 wk of storage. Lower degree of polymerization (DP) 3 to 6) FOS, higher (DP 7 to 12) FOS, total FOS, and total carbohydrates showed similar and close patterns during 24 wk. They varied slightly at the beginning of the storage period; afterward they decreased progressively and regularly during the last 20 wk of storage. 1-FEH and 1-KH activities were low but peaked abruptly after 12 and 16 wk, respectively, after which they decreased to levels higher (1-FEH) or similar (1-KH) to those observed at the beginning of the storage. Surprisingly, 1-FFT activity showed similar pattern to the variation of 1-KH hydrolyzing activity; on the other hand, 6G-FFT, although higher, was stable during 16 wk but decreased after that. The results allowed us to associate FOS to the dormancy and sprouting states, and the peaks of the degrading enzymes were shown to signal the release of dormancy of onion bulb. [source] Effect of Sodium Chloride, Acetic Acid, and Enzymes on Carotene Extraction in Carrots (Daucus carota L.)JOURNAL OF FOOD SCIENCE, Issue 2 2005Maria E. Jaramillo-Flores ABSTRACT: Carrot root cores were cut off longitudinally and treated with NaCl (0.6 and 1.2 M) and/or acetic acid (1.33%, 2.67%, and 4%) solutions. The extractability of the carotenes was estimated. Similarly, carrot cores were also treated with some degrading enzymes (carbohydrases, lipases, and proteases) alone or in combination to study the effect of the tissue rupture or the hydrolysis of possible complexes or interactions between carotenes and other components on the carotene extractability. The results showed that acetic acid increased the extractability of ,- and , carotenes up to 99.8% and 94.6%, respectively, at a 4% acid concentration compared with the samples without any treatment. This increase was directly proportional to the acid concentration. An increase in extractability was also observed for NaCl, although the increases were not as high as in the previous case with values of 49% and 41.4% for ,- and ,-carotenes respectively at a 0.6 M concentration. The study of microstructural changes and extractability revealed that the enzymatic treatments could have broken some carotene complexes and interactions and altered the carbohydrate matrix structure, increasing to a certain extent the extractability of carotenes. It can be concluded then that pickling with 4% acetic acid is a good method to increase the extractability of ,- and ,-carotenes. [source] A Novel Process for the Recovery of Polyphenols from Grape (Vitis vinifera L.) PomaceJOURNAL OF FOOD SCIENCE, Issue 2 2005Dietmar Kammerer ABSTRACT: A novel process for enzyme-assisted extraction of polyphenols from winery by-products was established on a pilot-plant scale. Optimization of enzymatic hydrolysis of grape skins, that is, selection of pectinolytic and cellulolytic enzymes, enzyme-substrate ratio, and time-temperature regime of enzymatic treatment, was conducted on a laboratory scale. Enzyme activities were monitored by viscosity measurement of resuspended grape pomace and by quantification of oligomeric pectin and cellulose degradation products released from cell wall material. Optimal conditions were obtained with 5000 ppm (based on dry matter) of a pectinolytic and 2500 ppm of a cellulolytic enzyme preparation, respectively, at 50°C, which were also applied in pilot-plant scale experiments. Concomitant determination of individual polyphenolics demonstrated a significantly improved yield for most compounds when compared with experiments without enzyme addition. Recovery rates were comparable to those obtained when grape pomace was extracted using sulfite. Pre-extraction of the pomace with hot water followed by treatment with cell wall degrading enzymes even increased yields of phenolic compounds. Only some quercetin glycosides and malvidin coumaroylglucoside were partly hydrolyzed due to enzyme side activities. This new process may provide a valuable alternative to the application of sulfite, which is considered crucial in food processing. [source] Effect of Cell Wall Degrading Enzymes on In Vitro Carotene Accessibility in Lactic Acid Fermented Carrot BeverageJOURNAL OF FOOD SCIENCE, Issue 2 2004V. Díaz ABSTRACT: Carrot purées with different particle size were prepared from fresh carrots using 2 different food processors. The purées were fermented with lactic acid bacteria (Lactobacillus plantarum) with and without addition of cell wall degrading enzymes (Pectinex® Ultra SP-L and CellubrixTM L). The bioaccessibility of carotenes was estimated using an in vitro digestion method. In carrots processed to a particle size <1.5 mm, the in vitro ,-carotene accessibility was 46% and neither fermentation nor addition of cell wall-degrading enzymes had any further effect on the in vitro accessibility. In carrot purées with a coarser particle size, the in vitro ,-carotene accessibility was 18%; that significantly increased by adding high amounts of cellulases or pectinases or a combination of the enzymes either in low or high amounts. The improved accessibility was correlated with reduced particle size of the carrot purée. [source] Multiple Roles for the Endocannabinoid System During the Earliest Stages of Life: Pre- and Postnatal DevelopmentJOURNAL OF NEUROENDOCRINOLOGY, Issue 2008E. Fride The endocannabinoid system, including its receptors (CB1 and CB2), endogenous ligands (,endocannabinoids'), synthesising and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. In addition, the endocannabinoids, notably 2-arachidonyl glycerol, are also present in maternal milk. During three distinct developmental stages (i.e. embryonic implantation, prenatal brain development and postnatal suckling), the endocannabinoid system appears to play an essential role for development and survival. Thus, during early pregnancy, successful embryonic passage through the oviduct and implantation into the uterus both require critical enzymatic control of optimal anandamide levels at the appropriate times and sites. During foetal life, the cannabinoid CB1 receptor plays a major role in brain development, regulating neural progenitor differentiation into neurones and glia and guiding axonal migration and synaptogenesis. Postnatally, CB1 receptor blockade interferes with the initiation of milk suckling in mouse pups, by inducing oral motor weakness, which exposes a critical role for CB1 receptors in the initiation of milk suckling by neonates, possibly by interfering with innervation of the tongue muscles. Manipulating the endocannabinoid system by pre- and/or postnatal administration of cannabinoids or maternal marijuana consumption, has significant, yet subtle effects on the offspring. Thus, alterations in the dopamine, GABA and endocannabioid systems have been reported while enhanced drug seeking behaviour and impaired executive (prefrontal cortical) function have also been observed. The relatively mild nature of the disruptive effects of prenatal cannabinoids may be understood in the framework of the intricate timing requirements and frequently biphasic effects of the (endo)cannabinoids. In conclusion, the endocannabinoid system plays several key roles in pre- and postnatal development. Future studies should further clarify the mechanisms involved and provide a better understanding of the adverse effects of prenatal exposure, in order to design strategies for the treatment of conditions such as infertility, mental retardation and failure-to-thrive. [source] Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 8 2010Thilo John Abstract Tendon injury induces a local inflammatory response, characterized by the induction of pro-inflammatory cytokines. The aim of the present study was to analyze the effects of TNF,, IL-6 and IL-10 on key parameters of tendon homeostasis. Cultured primary human tenocytes were treated with the recombinant cytokines IL-6, IL-10, TNF,, or combinations of TNF, with IL-6 and IL-10 (10 ng/mL, 6, 24 h). Expression of type I collagen, elastin, MMP-1, TNF,, IL-1,, IL-6, IL-10, and suppressors of cytokine signaling (SOCS1, 3) was analyzed with the use of RTD-PCR, immunocytochemistry, and Western blot analysis. In response to TNF,, tenocytes reduced their type I collagen deposition but increased their elastin gene expression and highly upregulated their expression for MMP-1, pro-inflammatory (TNF,, IL-1,) and immunoregulatory (IL-6, IL-10) cytokines. TNF, stimulation augmented SOCS1, whereas SOCS3 expression in tenocytes was also induced by IL-6. The treatment of tenocytes with IL-6 and IL-10 had no effect on cytokine expression. Neither IL-6 nor IL-10 modulated the observed effects of TNF, significantly. These results indicate that TNF, strongly activates the tenocytes to amplify their own TNF, expression and, subsequently, that of other regulatory cytokines and matrix degrading enzymes. However, the impact of IL-6 and IL-10 on tenocytes remains unclear. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1071,1077, 2010 [source] Recent advances in skin ,barrier' researchJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2010Anthony V. Rawlings Abstract Objectives Our knowledge on the complexity of stratum corneum biology, chemistry and biophysics has grown over the last decade. This and the intricate control mechanisms in the stratum corneum that bring about its full and proper structural maturity will be reviewed. Key findings The importance of the total architecture of the stratum corneum in relation to desquamation and barrier function, the role of the corneodesmosomes and their degrading enzymes, new insights into the importance of natural moisturising factor and the emerging knowledge on the chemical antimicrobial barrier of the stratum corneum are discussed. Summary Despite our increasing knowledge of the complexity of stratum corneum, we are still far from understanding its intricate control mechanisms that bring about its maturity and desquamation. [source] Cannabinoid receptor ligands as potential anticancer agents , high hopes for new therapies?JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2009Susanne Oesch Abstract Objectives The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent years, CB receptor ligands, including ,9 -tetrahydrocannabinol, have been proposed as potential anticancer agents. Key findings This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB1 and CB2 receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. Summary The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB2 -selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents. [source] Antibiotics: Has the magic gone?JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2007Yogesh Chander Abstract The emergence of antibiotic resistant bacteria has diminished the efficacy of several antibiotics that were used to treat infectious diseases in humans and animals. In recent years, the problem of antibiotic resistance has become more apparent as increasing numbers of bacteria have acquired resistance to multiple antibiotics. Antibiotics inhibit bacterial growth through a variety of mechanisms including inhibition of cell wall or protein synthesis, interference with DNA (or RNA) replication, and disruption of metabolic pathways or cell membrane. Bacteria develop resistance through genetic mutations or by acquiring resistant genes involved in the production of antibiotic degrading enzymes, overproduction of target molecules, efflux pumps to drain out antibiotics, and/or altered cell wall permeability to survive adverse physiological conditions. Published literature suggests that sub-therapeutic feeding of food animals for growth promotion along with casual use of antibiotics in household products such as soaps and creams is contributing to increased antimicrobial resistance in the environment. If steps are not taken to minimize selective pressure on bacteria, the effectiveness of antibiotics (hailed as ,magic bullets') may be marginalized. Important steps in the judicious use of antibiotics on the farm are: (1) education of farmers on the pitfalls of using antibiotics sub-therapeutically in the production of food animals; (2) development of animal production practices that reduce dependence on antibiotics; and (3) development of manure disposal practices that minimize the spread of residual antibiotics and antibiotic resistant bacteria into the environment. In addition, educating the general public on the use and misuse of antibiotics in daily life is also important if there is to be any significant impact on reducing the environmental spread of antibiotic resistance. Copyright © 2006 Society of Chemical Industry [source] Soft rot erwiniae: from genes to genomesMOLECULAR PLANT PATHOLOGY, Issue 1 2003Ian K. Toth SUMMARY The soft rot erwiniae, Erwinia carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Ech) are major bacterial pathogens of potato and other crops world-wide. We currently understand much about how these bacteria attack plants and protect themselves against plant defences. However, the processes underlying the establishment of infection, differences in host range and their ability to survive when not causing disease, largely remain a mystery. This review will focus on our current knowledge of pathogenesis in these organisms and discuss how modern genomic approaches, including complete genome sequencing of Eca and Ech, may open the door to a new understanding of the potential subtlety and complexity of soft rot erwiniae and their interactions with plants. Taxonomy: ,The soft rot erwiniae are members of the Enterobacteriaceae, along with other plant pathogens such as Erwinia amylovora and human pathogens such as Escherichia coli, Salmonella spp. and Yersinia spp. Although the genus name Erwinia is most often used to describe the group, an alternative genus name Pectobacterium was recently proposed for the soft rot species. Host range:,Ech mainly affects crops and other plants in tropical and subtropical regions and has a wide host range that includes potato and the important model host African violet ( Saintpaulia ionantha ). Ecc affects crops and other plants in subtropical and temperate regions and has probably the widest host range, which also includes potato. Eca , on the other hand, has a host range limited almost exclusively to potato in temperate regions only. Disease symptoms: ,Soft rot erwiniae cause general tissue maceration, termed soft rot disease, through the production of plant cell wall degrading enzymes. Environmental factors such as temperature, low oxygen concentration and free water play an essential role in disease development. On potato, and possibly other plants, disease symptoms may differ, e.g. blackleg disease is associated more with Eca and Ech than with Ecc. Useful websites: ,http://www.scri.sari.ac.uk/TiPP/Erwinia.htm, http://www.ahabs.wisc.edu:16080/pernalab/erwinia/index.htm, http://www.tigr.org/tdb/mdb/mdbinprogress.html, http://www.sanger.ac.uk/Projects/E_carotovora/. [source] SYMPOSIUM: Clearance of A, from the Brain in Alzheimer's Disease: A,-Degrading Enzymes in Alzheimer's DiseaseBRAIN PATHOLOGY, Issue 2 2008James Scott Miners Abstract In Alzheimer's disease (AD) A, accumulates because of imbalance between the production of A, and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of A, is partly, if not in some cases solely, because of defects in its removal,mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading A,. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced A,-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading A,in vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOE,4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to A, plaque load. Up-regulation of some A,-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other A,-clearance pathways, reductions in the activity of particular A,-degrading enzymes may become critical, leading to the development of AD and CAA. [source] |