Degrading Activity (degrading + activity)

Distribution by Scientific Domains


Selected Abstracts


Impact of Collimonas bacteria on community composition of soil fungi

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2009
Sachie Höppener-Ogawa
Summary The genus Collimonas consists of soil bacteria that have the potential to grow at the expense of living fungal hyphae. However, the consequences of this mycophagous ability for soil fungi are unknown. Here we report on the development of fungal communities after introduction of collimonads in a soil that had a low abundance of indigenous collimonads. Development of fungal communities was stimulated by addition of cellulose or by introducing plants (Plantago lanceolata). Community composition of total fungi in soil and rhizosphere and of arbuscular mycorrhizal fungi in roots was examined by PCR-DGGE. The introduction of collimonads altered the composition of all fungal communities studied but had no effects on fungal biomass increase, cellulose degrading activity or plant performance. The most likely explanation for these results is that differences in sensitivity of fungal species to the presence of collimonads result in competitive replacement of species. The lab and greenhouse experiments were complemented with a field experiment. Mesh bags containing sterile sand with or without collimonads were buried in an ex-arable field and a forest. The presence of collimonads had an effect on the composition of fungi invading these bags in the ex-arable site but not in the forest site. [source]


Penicillium strains as dominant degraders in soil for coffee residue, a biological waste unsuitable for fertilization

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007
Katsuhiko Fujii
Abstract Aims:, Coffee residue is an agricultural waste which inhibits the growth of several crops. Therefore coffee residue-degrading microbes in soil were screened, isolated and characterized. Methods and Results:, Forty isolates were obtained after enrichment culture of soil samples. Seven strains (fast degraders) showed strong degrading activity, while 18 strains (slow degraders) showed weak degrading activity. DNA analysis suggested that the fast degraders are Penicillium, and the slow degraders are Penicillium, Trichoderma/Hypocrea, Fusarium/Gibberella, Phaeoacremonium/Togninia or Acidocella. The all fast degraders are cellulolytic, mannolytic and pectinolytic. Conclusions:, Although it is generally thought that fungi such as Trichoderma contribute largely to aerobic degradation of cellulosic biomass, our data suggested that Penicillium overwhelms them in coffee residue degradation. It was implied that polysaccharides in coffee residue are not degraded independently by different microbes, but degraded simultaneously by strains with cellulolytic, mannolytic and pectinolytic activity. Since there is no report of an ascomycete possessing all the three enzyme activities, the fast degraders are ecologically important and have the potential to be used as producers of the costly enzymes from agricultural wastes. Significance and Impact of Study:, The present results advance our understanding of microbial degradation of a phytotoxic agricultural waste, and offer a new tool for recycling it. [source]


Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: Implication in regulation of NAD+/NADP+ balance

JOURNAL OF BASIC MICROBIOLOGY, Issue 3 2004
Shigeyuki Kawai
NADP phosphatase (NADPase) is an enzyme that converts NADP+ into NAD+ through dephosphorylation of NADP+, and is considered to be one of the possible candidates for regulation of the NAD+/NADP+ balance in vivo. In order to obtain an intrinsic NADPase, the NADP+ -degrading activity in a membrane-free cell extract of a Gram-positive bacterium, Arthrobacter sp. strain KM, was first assessed and demonstrated to be mainly achieved through the NADPase reaction, indicating NADPase is essential for degradation of NADP+ and therefore for regulation of the NAD+/NADP+ balance in cytosol. Then, the isolation of cytosolic NADPase was attempted using NADP+ as a substrate. Two NADPase isozymes, designated as NADPases I and II, were purified from the cell extract of the bacterium, and were indicated to be the sole cytosolic NADPases regulating the balance of NAD+/NADP+. NADPases I and II are homodimers of 32 and 30 kDa subunits, respectively, and most active at pH 7,8. The N-terminal amino acid sequences of the two enzymes are similar to each other. Among the biological substrates tested, both enzymes showed the highest activity toward NADP+ and NADPH. AMP, ADP, and pyridoxal 5,-phosphate were also dephosphorylated, but to lower extents. Comparison of the features of NADPases I and II with those of other acid phosphatases possessing NADPase activity suggested that NADPases I and II are novel enzymes participating in regulation of the NAD+/NADP+ balance in the cytosol. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


SYMPOSIUM: Clearance of A, from the Brain in Alzheimer's Disease: A,-Degrading Enzymes in Alzheimer's Disease

BRAIN PATHOLOGY, Issue 2 2008
James Scott Miners
Abstract In Alzheimer's disease (AD) A, accumulates because of imbalance between the production of A, and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of A, is partly, if not in some cases solely, because of defects in its removal,mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading A,. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced A,-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading A,in vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOE,4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to A, plaque load. Up-regulation of some A,-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other A,-clearance pathways, reductions in the activity of particular A,-degrading enzymes may become critical, leading to the development of AD and CAA. [source]