Degradation System (degradation + system)

Distribution by Scientific Domains


Selected Abstracts


Dendritic growth induced by BMP-7 requires Smad1 and proteasome activity

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2001
Xin Guo
Abstract Bone morphogenetic proteins (BMPs) induce dendritic growth in cultured sympathetic neurons; however, the signaling pathways that mediate this dendrite-promoting activity have not been previously characterized. Here we report studies of the signaling events that regulate the growth of these afferent processes. We find that Smad1 is expressed in sympathetic neurons and that BMPs rapidly induce its phosphorylation and translocation from the cytoplasm to the nucleus. Furthermore, a dominant negative form of Smad1 inhibits BMP-7-induced dendritic growth, suggesting a requirement for Smad1 activation in this biological activity of BMP-7. A physical interaction between Smad1 and components involved in the proteasome-mediated degradation system was detected with a yeast two-hybrid screen, thereby prompting an examination of the effects of proteasome inhibitors on dendritic growth. Lactacystin and ALLN (N -acetyl-Leu-Leu-norleucinal) selectively blocked BMP-7-induced dendritic growth without adversely affecting either cell viability or axonal growth. Moreover, studies of transfected P19 cells suggest that the proteasome inhibitors directly block the effects of Smad1 on the transcriptional activity of the Tlx-2 promoter. These data indicate that BMP-induced dendritic growth requires Smad1 activation and involves proteasome-mediated degradation events. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 120,130, 2001 [source]


Atg17 recruits Atg9 to organize the pre-autophagosomal structure

GENES TO CELLS, Issue 5 2009
Takayuki Sekito
Autophagy is a degradation system of cytoplasmic proteins and organelles via formation of double-membrane vesicles called autophagosomes. In the yeast Saccharomyces cerevisiae, autophagosomes are formed via the pre-autophagosomal structure (PAS) in a manner dependent on Atg proteins. Under nutrient-rich condition, Atg9 is recruited to the PAS by binding to Atg11 for the Cvt pathway. However, because Atg9 is recruited to the PAS in atg11, cells in starved condition and autophagy is induced, autophagy-specific mechanism for the Atg9 recruitment to the PAS has been assumed. Here, we demonstrate that, in autophagy-inducing condition, Atg9 is recruited to the PAS in a manner dependent on Atg17. Atg9 physically interacts with Atg17 in the presence of rapamycin. This interaction requires Atg1, a protein kinase essential for autophagy. Consistently, the Atg17-dependent PAS localization of Atg9 requires Atg1. However, its kinase activity is dispensable for this process. It rather regulates the equilibrium of assembly and disassembly of Atg9 at the PAS. [source]


The expression of tubulin polymerization promoting protein TPPP/p25, is developmentally regulated in cultured rat brain oligodendrocytes and affected by proteolytic stress

GLIA, Issue 16 2008
Olaf Goldbaum
Abstract The tubulin polymerization-promoting protein (TPPP)/p25, was identified as a brain specific protein, is associated with microtubules (MTs) in vitro and can promote abnormal MT assembly. Furthermore it has aggregation promoting properties and is a constituent in pathological protein deposits of neurodegenerative diseases. In the brain, TPPP/p25, is present in myelinating oligodendrocytes. Here we show, using cultured rat brain oligodendrocytes, that TPPP/p25, expression is increasing during development in culture, and particularly in immature cells is associated with the centrosome. MT binding properties in oligodendrocytes are rather low, however, when MTs are disassembled by nocodazole, TPPP/p25, accumulates in the perinuclear region. Treatment of oligodendrocytes with the proteasomal inhibitor MG-132 (1 ,M; 18 h) caused an increase in the amount of TPPP/p25, by about 40%, a decrease in its solubility, and led to the appearance of TPPP/p25,-positive cytoplasmic inclusions, which stained with thioflavin S and resembled inclusion bodies. Hence, it might be speculated that acute or chronic malfunction of the proteasomal degradation system, leading to the accumulation of aggregation prone proteins and the pro-aggregatory protein TPPP/p25, or to the aggregation of TPPP/p25, on its own, is causally related to the protein aggregation process in a variety of neurodegenerative diseases. © 2008 Wiley-Liss, Inc. [source]


Review: Autophagy in neurodegeneration: firefighter and/or incendiarist?

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2009
A. Rami
Autophagy is an intracellular bulk degradation system that is found ubiquitously in eukaryotes. Autophagy is responsible for the degradation of most long-lived proteins and some organelles. Cytoplasmic constituents, including organelles, are sequestered into double-membrane autophagosomes, which subsequently fuse with lysosomes where their contents are degraded. This system has been implicated in various physiological processes including protein and organelle turnover, stress response, cellular differentiation, programmed cell death and pathological conditions. Defects in the autophagy machinery might have several consequences, as they have been associated with neurodegenerative disease and different forms of cancer. Thus, autophagy occupies a crucial position within the cell's metabolism, and its modulation may represent an alternative therapeutic strategy in several pathological settings including stroke, Alzheimer's, Huntington's, Parkinson's diseases and cancer. Recently, research has begun to identify some characteristics of neuronal autophagy. The results suggest that autophagy may provide a neuroprotective mechanism. However, there is evidence showing that dysfunction of autophagy in certain pathological situations can trigger and mediate programmed cell death. Autophagy has also been defined as prime suspect cause of non-apoptotic cellular demise. However, there is now mounting evidence that autophagy and apoptosis share several common regulatory elements that are crucial in any attempt to understand the dual role of autophagy in cell death and cell survival. It will be of fundamental importance to dissect whether autophagy is primarily a strategy for survival or whether autophagy can also be a part of a cell death programme and thus contribute to cell death. Many questions are open. Is autophagy a direct death execution pathway? Is autophagy an innocent bystander? Is autophagy a defence mechanism or just a scavenger or self-clearance tool in the cell? A profound understanding of the biological effects and the mechanisms underlying autophagy in neurones might be helpful in seeking effective new treatments for neurodegenerative diseases. Here, we review the defining characteristics of autophagy with special attention to its role in neurodegenerative disorders, and recent efforts to delineate the pathway of autophagic protein degradation in neurone. [source]


Oxidative Degradation of Azo Dyes by Manganese Peroxidase under Optimized Conditions

BIOTECHNOLOGY PROGRESS, Issue 2 2003
I. Mielgo
The application of enzyme-based systems in waste treatment is unusual, given that many drawbacks are derived from their use, including low efficiency, high costs and easy deactivation of the enzyme. The goal of this study is the development of a degradation system based on the use of the ligninolytic enzyme manganese peroxidase (MnP) for the degradation of azo dyes. The experimental work also includes the optimization of the process, with the objective of determining the influence of specific physicochemical factors, such as organic acids, H2O2 addition, Mn2+ concentration, pH, temperature, enzyme activity and dye concentration. A nearly total decolorization was possible at very low reaction times (10 min) and at high dye concentration (up to 1500 mg L,1). A specific oxidation capacity as high as 10 mg dye degraded per unit of MnP consumed was attained for a decolorization higher than 90%. Among all, the main factor affecting process efficiency was the strategy of H2O2 addition. The continuous addition at a controlled flow permitted the progressive participation of H2O2 in the catalytic cycle through a suitable regeneration of the oxidized form of the enzyme, which enhanced both the extent and the rate of decolorization. It was also found that, in this particular case, the presence of a chelating organic acid (e.g., malonic) was not required for an effective operation. Probably, Mn3+ was chelated by the dye itself. The simplicity and high efficiency of the process open an interesting possibility of using of MnP for solving other environmental problems. [source]


Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration

BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2005
M. Fujiwara
Summary Background, ,A keloid is a specific skin lesion that expands beyond the boundaries of the original injury as it heals. Histologically, it is characterized by the excessive accumulation of collagen. However, the reasons for the expansion and the invasive nature of keloids remain unknown. Objectives, We evaluated collagen degradation and migration by cultured keloid fibroblasts based on the assumption that these variables were of functional relevance to the expanding and invasive nature of keloid lesions. Methods, Collagen production was investigated by the detection of type 1 collagen (procollagen type 1C peptide: P1P). Matrix metalloproteinase (MMP)-1 (interstitial collagenase) and MMP-2 (gelatinase-A), were investigated as elements of the collagen degradation system. Enzyme immunoassays were performed to measure the production of P1P, MMP-1, MMP-2, and tissue inhibitor of metalloproteinase (TIMP)-1. To assess the production of MMP-2 its gelatinolytic activity was measured by zymography using gelatin-containing gels. The participation of transforming growth factor-,1 (TGF-,1) in the production and degradation of collagen was also investigated. Finally, the migratory activity of keloid fibroblasts was evaluated using a colony dispersion assay. Results, The production of type 1 collagen, MMP-1, MMP-2, and TIMP-1 by keloid fibroblasts was 3-fold, 6-fold, 2·4-fold, and 2-fold greater than that of normal dermal fibroblasts, respectively. Production of P1P was increased when TGF-,1 was added to cultures of keloid fibroblasts, while it was decreased when anti-TGF-,1 antibody was added to the cultures. In contrast, the production of MMP-1 was decreased by the addition of TGF-,1 to cultured keloid fibroblasts, while it was increased when anti-TGF-,1 antibody was added to the cultures. The production of MMP-2 increased after treatment with TGF-,1, but did not change significantly when anti-TGF-,1 antibody was added to the cultures. Production of TIMP-1 did not change significantly when either TGF-,1 or anti-TGF-,1 antibody was added to the cultures. Keloid fibroblasts showed a 2·5-fold increase of migratory activity compared with normal dermal fibroblasts, while the migratory activity of these fibroblasts was reduced to the control level by treatment with a broad-spectrum MMP inhibitor (GM 6001). Conclusions, Cultured keloid fibroblasts showed increased production of collagen and MMPs, and TGF-,1 played a role in this regulation of production. In addition, increased production of MMPs had a role in the high migratory activity of cultured keloid fibroblasts. [source]


Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2004
Lidia Ruiz-Llorente
The response of anandamide is terminated by a carrier-mediated transport followed by degradation catalyzed by the cloned enzyme fatty acid amidohydrolase (FAAH). In this study, we provide biochemical data showing an anandamide uptake process and the expression of FAAH in human prostate. Anandamide was accumulated in PC-3 cells by a saturable and temperature-dependent process. Kinetic studies of anandamide uptake, determined in the presence of cannabinoid and vanilloid antagonists, revealed apparent parameters of KM=4.7±0.2 ,M and Vmax=3.3±0.3 pmol min,1 (106 cells),1. The accumulation of anandamide was moderately inhibited by previously characterized anandamide transporter inhibitors (AM404, UCM707 and VDM11) but was unaffected by inhibitors of other lipid transport systems (phloretin or verapamil) and moderately affected by the FAAH inhibitor methyl arachidonyl fluorophosphonate. The presence of FAAH in human prostate epithelial PC-3 cells was confirmed by analyzing its expression by Western blot and measuring FAAH activity. To further study the structural requirements of the putative carrier, we synthesized a series of structurally different compounds 1,8 and evaluated their capacity as uptake inhibitors. They showed different inhibitory capacity in PC-3 cells, with (9Z,12Z)- N -(fur-3-ylmethyl)octadeca-9,12-dienamide (4, UCM119) being the most efficacious, with maximal inhibition and IC50 values of 49% and 11.3±0.5 ,M, respectively. In conclusion, PC-3 cells possess a complete inactivation system for anandamide formed by an uptake process and the enzyme FAAH. These results suggest a possible physiological function of anandamide in the prostate, reinforcing the role of endocannabinoid system as a neuroendocrine modulator. British Journal of Pharmacology (2004) 141, 457,467. doi:10.1038/sj.bjp.0705628 [source]


Proteasome inhibition suppresses Schwann cell dedifferentiation in vitro and in vivo

GLIA, Issue 16 2009
Hyun Kyoung Lee
Abstract The ubiquitin-proteasome system (UPS), lysosomes, and autophagy are essential protein degradation systems for the regulation of a variety of cellular physiological events including the cellular response to injury. It has recently been reported that the UPS and autophagy mediate the axonal degeneration caused by traumatic insults and the retrieval of nerve growth factors. In the peripheral nerves, axonal degeneration after injury is accompanied by myelin degradation, which is tightly related to the reactive changes of Schwann cells called dedifferentiation. In this study, we examined the role of the UPS, lysosomal proteases, and autophagy in the early phase of Wallerian degeneration of injured peripheral nerves. We found that nerve injury induced an increase in the ubiquitin conjugation and lysosomal-associated membrane protein-1 expression within 1 day without any biochemical evidence for autophagy activation. Using an ex vivo explant culture of the sciatic nerve, we observed that inhibiting proteasomes or lysosomal serine proteases prevented myelin degradation, whereas this was not observed when inhibiting autophagy. Interestingly, proteasome inhibition, but not leupeptin, prevented Schwann cells from inducing dedifferentiation markers such as p75 nerve growth factor receptor and glial fibrillary acidic protein in vitro and in vivo. In addition, proteasome inhibitors induced cell cycle arrest and cellular process formation in cultured Schwann cells. Taken together, these findings indicate that the UPS plays a role in the phenotype changes of Schwann cells in response to nerve injury. © 2009 Wiley-Liss, Inc. [source]


Rationale and methods for compiling an atlas of desertification in Italy

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2009
E. A. C. Costantini
Abstract This study presents the main results and the methodology used in the creation of the atlas of the risk of desertification in Italy. A desertified area was defined as an unproductive area for agricultural or forestry use, due to soil degradation processes. An area at risk of desertification was a tract of the earth's surface which is vulnerable or sensitive to the processes of desertification. In a vulnerable land, environmental characteristics are close to that of a desertified area, but some factors (e.g. vegetation cover or irrigation), successfully mitigate the desertification process. On the other hand, sensitive land is a surface where the process leading to desertification is active, although the land is not yet unproductive. The DPSIR (Driving force-Pressure-State-Impact-Response) framework has been adopted as a reference. Using the national soil information system and socio-economic layers, an atlas of indicators of desertification risks was created, which was organized into different soil degradation systems. 51.8 per cent of Italy was considered to be at potential risk of desertification. Some 21.3 per cent of Italy (41.1 per cent of the area at potential risk) featured land degradation phenomena. Specifically, 4.3 per cent of Italy is already unproductive; 4.7 per cent is sensitive and 12.3 per cent is vulnerable. In the territory at potential risk of desertification, unproductive lands, plus areas vulnerable or sensitive to soil erosion, are at least the 19 per cent. Areas affected by aridity also sum up to 19 per cent. Salt-affected soils in Italy are estimated to cover >1 million,ha. Irrigation can mitigate soil aridity and salinization, nevertheless, only about 15 per cent of the sensitive and vulnerable lands of southern Italy are actually equipped with irrigation networks. Copyright © 2009 John Wiley & Sons, Ltd. [source]