Degenerate Primers (degenerate + primer)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea

FEBS JOURNAL, Issue 2 2004
Shicheng Chen
We have isolated a laccase (lac1) from culture fluid of Volvariella volvacea, grown in a defined medium containing 150 µm CuSO4, by ion-exchange and gel filtration chromatography. Lac1 has a molecular mass of 58 kDa as determined by SDS/PAGE and an isoelectric point of 3.7. Degenerate primers based on the N-terminal sequence of purified lac1 and a conserved copper-binding domain were used to generate cDNA fragments encoding a portion of the lac1 protein and RACE was used to obtain full-length cDNA clones. The cDNA of lac1 contained an ORF of 1557 bp encoding 519 amino acids. The amino acid sequence from Ala25 to Asp41 corresponded to the N-terminal sequence of the purified protein. The first 24 amino acids are presumed to be a signal peptide. The expression of lac1 is regulated at the transcription level by copper and various aromatic compounds. RT-PCR analysis of gene transcription in fungal mycelia grown on rice-straw revealed that, apart from during the early stages of substrate colonization, lac1 was expressed at every stage of the mushroom developmental cycle defined in this study, although the levels of transcription varied considerably depending upon the developmental phase. Transcription of lac1 increased sharply during the latter phase of substrate colonization and reached maximum levels during the very early stages (primordium formation, pinhead stage) of fruit body morphogenesis. Gene expression then declined to ,,20,30% of peak levels throughout the subsequent stages of sporophore development. [source]


Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2008
Sunyoung Lee
Abstract A wasp, Cotesia plutellae, parasitizes the diamondback moth, Plutella xylostella, and interrupts host physiology for wasp survival and development. Identification of parasitism-specific factors would be helpful to understand the host,parasitoid interaction. This study focused on identification of a 15-kDa protein found only in plasma of the parasitized P. xylostella. Degenerate primers were designed after N-terminal amino acid sequencing of the parasitism-specific protein and used to clone the corresponding gene from the parasitized P. xylostella by a nested reverse transcriptase-polymerase chain reaction (RT-PCR). Two homologous genes were cloned and identified as "CpBV15," and "CpBV15,," respectively, due to the identical size (158 amino acid residues) of the predicted open reading frames, in which they shared amino acid sequences in both terminal regions, but varied in internal sequences. Southern hybridization analysis indicated that both genes were located on C. plutellae bracovirus genome. Real-time quantitative RT-PCR revealed that both genes were mostly expressed at the late parasitization period, which was further confirmed by an immunoblotting assay using CpBV15 antibody. A recombinant CpBV15 protein was produced from Sf9 cells via a baculovirus expression system. The purified CpBV15 protein could enter hemocytes of P. xylostella and were localized in the cytosol. Along with the sequence similarities of CpBV15s with eukaryotic initiation factors, their putative biological role has been discussed in terms of the host translation inhibitory factor. Arch. Insect Biochem. Physiol. 67:157,171, 2008. © 2008 Wiley-Liss, Inc. [source]


Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris

FEBS JOURNAL, Issue 16 2003
Masahiro Sugimura
A cellulase (endo-,-1,4-glucanase, EC 3.2.1.4) was purified from the gut of larvae of the yellow-spotted longicorn beetle Psacothea hilaris by acetone precipitation and elution from gels after native PAGE and SDS/PAGE with activity staining. The purified protein formed a single band, and the molecular mass was estimated to be 47 kDa. The purified cellulase degraded carboxymethylcellulose (CMC), insoluble cello-oligosaccharide (average degree of polymerization 34) and soluble cello-oligosaccharides longer than cellotriose, but not crystalline cellulose or cellobiose. The specific activity of the cellulase against CMC was 150 µmol·min,1·(mg protein),1. TLC analysis showed that the cellulase produces cellotriose and cellobiose from insoluble cello-oligosaccharides. However, a glucose assay linked with glucose oxidase detected a small amount of glucose, with a productivity of 0.072 µmol·min,1·(mg protein),1. The optimal pH of P. hilaris cellulase was 5.5, close to the pH in the midgut of P. hilaris larvae. The N-terminal amino-acid sequence of the purified P. hilaris cellulase was determined and a degenerate primer designed, which enabled a 975-bp cDNA clone containing a typical polyadenylation signal to be obtained by PCR and sequencing. The deduced amino-acid sequence of P. hilaris cellulase showed high homology to members of glycosyl hydrolase family 5 subfamily 2, and, in addition, a signature sequence for family 5 was found. Thus, this is the first report of a family 5 cellulase from arthropods. [source]


Detection of Aflatoxin in Aspergillus Species Isolated from Pistachio in Iran

JOURNAL OF PHYTOPATHOLOGY, Issue 1 2008
P. Rahimi
Abstract To estimate the incidence contamination of fresh pistachio nuts by aflatoxigenic fungi in Iran, nut samples were collected from pistachio orchards in Kerman, Rafsanjan and Isfahan regions. Out of the 200 Aspergillus isolates obtained, 11 species were identified as A. alliaceous, A. candidus, A. flavus, A. niger, A. niveus, A. ochraceus, A. parasiticus, A. tamari, A. terreus, A. unguis and A. wentii. For detection of aflatoxin production ability of the isolates, three target genes, namely aflR, aflJ, and omtB, used in PCR amplification. In all the examined cases, the degenerate primer designed for amplification of omtB gene, named omtBII, was able to amplify an expected 611 bp fragment in aflatoxigenic isolates in this study and yielded the same result as those obtained from TLC analysis and fluorescence ability by application of methylated ,-cyclodextrin in culture media. Using this procedure the significant incidence of aflatoxin-producing aspergilli was confirmed in pistachio nuts produced in different regions of Iran. The results indicated that PCR method described here, in combination with fluorescence assay, is a reliable and simple confirmatory test for monitoring pistachio nuts contaminated with aflatoxinogenic aspergilli. [source]


Myosins of Babesia bovis: Molecular characterisation, erythrocyte invasion, and phylogeny

CYTOSKELETON, Issue 4 2002
A.E. Lew
Abstract Using degenerate primers, three putative myosin sequences were amplified from Australian isolates of Babesa bovis and confirmed as myosins (termed Bbmyo-A, Bbmyo-B, and Bbmyo-C) from in vitro cultures of the W strain of B. bovis. Comprehensive analysis of 15 apicomplexan myosins suggests that members of Class XIV be defined as those with greater than 35% myosin head sequence identity and that these be further subclassed into groups bearing above 50,60% identity. Bbmyo-A protein bears a strong similarity with other apicomplexan myosin-A type proteins (subclass XIVa), the Bbmyo-B myosin head protein sequence exhibits low identity (35,39%) with all members of Class XIV, and 5,-sequence of Bbmyo-C shows strong identity (60%) with P. falciparum myosin-C protein. Domain analysis revealed five divergent IQ domains within the neck of Pfmyo-C, and a myosin-N terminal domain as well as a classical IQ sequence unusually located within the head converter domain of Bbmyo-B. A cross-reacting antibody directed against P. falciparum myosin-A (Pfmyo-A) revealed a zone of approximately 85 kDa in immunoblots prepared with B. bovis total protein, and immunofluorescence inferred stage-specific myosin-A expression since only 25% of infected erythrocytes with mostly paired B. bovis were immuno-positive. Multiplication of B. bovis in in vitro culture was inhibited by myosin- and actin-binding drugs at concentrations lower than those that inhibit P. falciparum. This study identifies and classifies three myosin genes and an actin gene in B. bovis, and provides the first evidence for the participation of an actomyosin-based motor in erythrocyte invasion in this species of apicomplexan parasite. Cell Motil. Cytoskeleton 52:202,220, 2002. © 2002 Wiley-Liss, Inc. [source]


Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2000
Kazuo Tomita
The cDNA for the core protein of the heparan sulfate proteoglycan, syndecan, of embryos of the sea urchin Anthocidaris crassispina was cloned and characterized. Reverse transcription,polymerase chain reaction (RT-PCR) was used with total ribonucleic acid (RNA) from late gastrula stage embryos and degenerate primers for conserved regions of the core protein, to obtain a 0.1 kb PCR product. A late gastrula stage cDNA library was then screened using the PCR product as a probe. The clones obtained contained an open reading frame of 219 amino acid residues. The predicted product was 41.6% identical to mouse syndecan-1 in the region spanning the cytoplasmic and transmembrane domains. Northern analysis showed that the transcripts were present in unfertilized eggs and maximum expression was detected at the early gastrula stage. Syndecan mRNA was localized around the nuclei at the early cleavage stage, but was then found in the ectodermal cells of the gastrula embryos. Western blotting analysis using the antibody against the recombinant syndecan showed that the proteoglycan was present at a constant level from the unfertilized egg stage through to the pluteus larval stage. Immunostaining revealed that the protein was expressed on apical and basal surfaces of the epithelial wall in blastulae and gastrulae. [source]


Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
Petra Louis
Summary Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed > 98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P = 0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community. [source]


Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2007
Haewon Park
Summary A recent report of a novel carbonic anhydrase (CDCA1) with Cd as its metal centre in the coastal diatom Thalassiosira weissflogii has led us to search for the occurrence of this Cd enzyme (CDCA) in other marine phytoplankton and in the environment. Using degenerate primers designed from the published sequences from T. weissflogii and a putative sequence in the genome of Thalassiosira pseudonana, we show that CDCA is widespread in diatom species and ubiquitous in the environment. All detected genes share more than 64% amino acid identity with the CDCA of T. pseudonana. Analysis of the amino acid sequence of CDCA shows that the putative Cd binding site resembles that of beta-class carbonic anhydrases (CAs). The prevalence of CAs in diatoms that presumably contain Cd at their active site probably reflects the very low concentration of Zn in the marine environment and the difficulty in acquiring inorganic carbon for photosynthesis. The cdca primers developed in this study should be useful for detecting cdca genes in the field, and studying the conditions under which they are expressed. [source]


Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps

ENVIRONMENTAL MICROBIOLOGY, Issue 9 2006
K. Deiglmayr
Summary Changes in community structure and activity of the dissimilatory nitrate-reducing community were investigated across a glacier foreland in the Central Alps to gain insight into the successional pattern of this functional group and the driving environmental factors. Bulk soil and rhizosphere soil of Poa alpina was sampled in five replicates in August during the flowering stage and in September after the first snowfalls along a gradient from 25 to 129 years after deglaciation and at a reference site outside the glacier foreland (> 2000 years deglaciated). In a laboratory-based assay, nitrate reductase activity was determined colorimetrically after 24 h of anaerobic incubation. In selected rhizosphere soil samples, the community structure of nitrate-reducing microorganisms was analysed by restriction fragment length polymorphism (RFLP) analysis using degenerate primers for the narG gene encoding the active site of the membrane-bound nitrate reductase. Clone libraries of the early (25 years) and late (129 years) succession were constructed and representative clones sequenced. The activity of the nitrate-reducing community increased significantly with age mainly due to higher carbon and nitrate availability in the late succession. The community structure, however, only showed a small shift over the 100 years of soil formation with pH explaining a major part (19%) of the observed variance. Clone library analysis of the early and late succession pointed to a trend of declining diversity with progressing age. Presumably, the pressure of competition on the nitrate reducers was relatively low in the early successional stage due to minor densities of microorganisms compared with the late stage; hence, a higher diversity could persist in this sparse environment. These results suggest that the nitrate reductase activity is regulated by environmental factors other than those shaping the genetic structure of the nitrate-reducing community. [source]


Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi

INSECT MOLECULAR BIOLOGY, Issue 2 2000
L. Cui
Abstract Some refractory anopheline mosquitoes are capable of killing Plasmodium, the causative agent of malaria, by melanotic encapsulation of invading ookinetes. Phenoloxidase (PO) appears to be involved in the formation of melanin and toxic metabolites in the surrounding capsule. A cDNA encoding Anopheles stephensi prophenoloxidase (Ans-proPO) was isolated from a cDNA library screened with an amplimer produced by reverse transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed against conserved proPO sequences. The 2.4-kb-long cDNA has a 2058 bp open reading frame encoding Ans-proPO of 686 amino acids. The deduced amino acid sequence shows significant homology to other insect proPO sequences especially at the two putative copper-binding domains. In A. stephensi, Ans-proPO expression was detected in larval, pupal and adult stages. The Ans-proPO mRNA was detected by RT-PCR and in situ hybridization in haemocytes, fat body and epidermis of adult female mosquitoes. A low level of expression was detected in the ovaries, whereas no expression was detected in the midguts. Semi-quantitative RT-PCR analysis of Ans-proPO mRNA showed that its expression was similar in adult female heads, thoraxes and abdomens. No change in the level of Ans-proPO expression was found in adult females after blood feeding, bacterial challenge or Plasmodium berghei infection. However, elevated PO activity was detected in P. berghei -infected mosquitoes, suggesting that in non-selected permissive mosquitoes PO may be involved in limiting parasite infection. Genomic Southern blot and immunoblots suggest the presence of more than one proPO gene in the A. stephensi genome, which is consistent with the findings in other Diptera and Lepidoptera species. The greatest similarity in sequence and expression profile between Ans-proPO and A. gambiae proPO6 suggests that they might be homologues. Our results demonstrate that Ans-proPO is constitutively expressed through different developmental stages and under different physiological conditions, implying that other factors in the proPO activation cascade regulate melanotic encapsulation. [source]


Molecular cloning of several rat ABC transporters including a new ABC transporter, Abcb8, and their expression in rat testis

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2006
Nathalie Melaine
Summary Several members of the ABC transporter superfamily play an important role in testicular physiology and defence against anticancer drugs. Using a reverse transcription-polymerase chain reaction strategy with degenerate primers and rat testis RNA as template, we have looked for the presence of other members of this superfamily. Of the six partial cDNA found, five corresponded to ABC transporters already known ,Mdr1b, Mrp1, Tapl/Abcb9, Umat/Abcb6 and Sur2/Abcc9, and one presented a strong homology with mouse and human ABCB8. Using a 5, and 3, RACE approach, we cloned the full-length cDNA and found that the predicted protein presented 92% and 80% homology with the mouse and human proteins respectively. Strong expression of rat abcb8 was found in heart, brain and testis when compared with liver, lung and spleen. In the testis, rat abcb8 was expressed both in the somatic Sertoli cells and peritubular cells and in the germline (spermatogonia and pachytene spermatocytes). Furthermore, Umat/Abcb6 was very highly expressed in the testis (high amounts in meiotic pachytene spermatocytes and low amount in post-meiotic early spermatids). In conclusion, we confirm the presence of several ABC transporters in the testis and also provide evidence of the presence of Abcb8 in the organ. [source]


Detection of quinolone-resistance genes in Photobacterium damselae subsp. piscicida strains by targeting-induced local lesions in genomes

JOURNAL OF FISH DISEASES, Issue 8 2005
M-J Kim
Abstract Quinolone-resistant strains of the fish-pathogenic bacterium, Photobacterium damselae subsp. piscicida are distributed widely in cultured yellowtail, Seriola quinqueradiata (Temminck & Schlegel), in Japan. The quinolone resistance-determining region (QRDR) was amplified with degenerate primers, followed by cassette ligation-mediated PCR. Open reading frames encoding proteins of 875 and 755 amino acid residues were detected in the gyrA and parC genes, respectively. Resistant strains of P. damselae subsp. piscicida carried a point mutation only in the gyrA QRDR leading to a Ser-to-Ile substitution at residue position 83. No amino acid alterations were discovered in the ParC sequence. A mutation in the gyrA gene was also detected in nalidixic acid-resistant mutants of strain SP96002 obtained from agar medium containing increased levels of quinolone. These results suggest that GyrA, as in other Gram-negative bacteria, is a target of quinolone in P. damselae subsp. piscicida. Furthermore, we attempted to detect a point mutation using targeting-induced local lesions in genomes (TILLING), which is a general strategy used for the detection of a variety of induced point mutations and naturally occurring polymorphisms. We developed a new detection method for the rapid and large-scale identification of quinolone-resistant strains of P. damselae subsp. piscicida using TILLING. [source]


Cloning and Expression of Low Molecular Weight Glutenin Genes from the Chinese Elite Wheat Cultivar "Xiaoyan 54"

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2006
Xin-Yu Wang
Abstract The low molecular weight (LMW) glutenin subunits account for 40% of wheat gluten protein content by mass and these proteins are considered to significantly affect dough quality characteristics. Five new full-length LMW glutenin genes (designated LMW-5, LMW-7, LMW-42, LMW-58, and LMW-34) were isolated from the Chinese elite wheat cultivar "Xiaoyan 54" by PCR amplification of genomic DNA using a pair of degenerate primers designed from the conserved sequences of the N- and C-terminal regions of published LMW glutenin genes. Deduced amino acid sequence analysis showed that LMW-5 belongs to the LMW-i type genes and that the other four belong to LMW-m type genes. Sequence comparisons revealed that point mutations occasionally occurred in signal peptide and N-terminus domains and often existed in domain III and domain V. Small insertions and deletions are represented in the repetitive domain. There is a stop codon after amino acid position 110 in the repetitive domain of LMW-34, indicating that it is a pseudogene. The other four genes have complete open reading frames and the putative mature regions of these genes were subcloned into pET-30a expression vector and successfully expressed in Escherichia coli. Protein sodium dodecyl sulfate-polyacrylamide gel electro-phoresis analysis showed that all proteins expressed in E. coli by the four genes could be related to B-group LMW glutenin subunits of wheat. (Managing editor: Li-Hui Zhao) [source]


A TUBULAR MASTIGONEME-RELATED PROTEIN, OCM1, ISOLATED FROM THE FLAGELLUM OF A CHROMOPHYTE ALGA, OCHROMONAS DANICA,

JOURNAL OF PHYCOLOGY, Issue 3 2007
Takahiro Yamagishi
The phylogenetic group stramenopiles refers to the systematic groups that possess tripartite tubular hairs (stramenopiles) on their flagella. There have been a number of studies describing the fine structure of these mastigonemes and a few studies isolating the component proteins; however, these proteins and their gene sequences have not yet been identified. In the present study, we identified a mastigoneme protein (Ocm1) of the chrysophycean alga Ochromonas danica Pringsh. (UTEX LB1298). Its corresponding gene, Ocm1, was identified by using degenerate primers that correspond to the partial amino acid sequences of a protein (85 kDa) obtained from a mastigoneme-rich fraction of isolated flagella. The polypeptide encoded by Ocm1 has four cysteine-rich, epithelial growth factor (EGF),like motifs, potentially involved in protein,protein interactions. It lacks obvious hydrophobic regions characteristic of transmembrane domains, suggesting that this polypeptide is not likely a protein for anchoring the mastigoneme. In addition, a polyclonal antibody against Ocm1 labeled the area where the tubular shafts of the mastigonemes are located, but not the basal portion or the terminal filaments. [source]


42 Diversity of phycoerythrin-containing picocyanobacteria that share the same spectral phenotype

JOURNAL OF PHYCOLOGY, Issue 2003
R. C. Everrroad
Phycoerythrin (PE) is an important light-harvesting pigment for many marine picocyanobacteria. There are numerous spectral forms of PE, which differ in their ability to absorb blue and green wavelengths of light, depending on the precise chromophore composition. It remains unclear how the evolutionary history of this family of proteins relates to the diversity of the marine picocyanobacteria. In order to ascertain the level of diversity present in marine picocyanobacterial communities and to determine if specific spectral phenotypes are homologous or convergent, we have begun to examine the genetic diversity found in marine picocyanobacterial strains that share the same or similar spectral signatures for PE fluorescence. The strains we examined are all clonal cultures isolated from a range of environments, including the Arabian Sea and Black Sea. We report results from sequence data obtained using degenerate primers for 16S rRNA, rpoC1, and PE genes; we also examine the utility of taxonomically grouping these organisms by using physiological characteristics such as size and PE signature. [source]


Molecular Characterization of a Distinct Begomovirus and its Associated Satellite DNA Molecule Infecting Sida acuta in China,

JOURNAL OF PHYTOPATHOLOGY, Issue 5 2005
Q. Xiong
Abstract Three viral isolates Hn8, Hn40 and Hn41 were obtained from Sida acuta showing yellow mosaic symptom in the Hainan province, China. Comparison of partial DNA-A sequences amplified with degenerate primers confirmed the existence of single type of Begomovirus. The complete nucleotide sequence of the DNA-A-like molecule of Hn8 was determined to be 2749 nucleotides, having a typical genetic organization of a Begomovirus. Hn8 DNA-A had the highest sequence identity (78%) with that of Ageratum yellow vein China virus-[G13] (AJ558120), and had less sequence identity with other begomoviruses. Based on the above molecular data, Hn8 was thus considered as a new Begomovirus species, for which the name Sida yellow mosaic China virus (SiYMCNV) is proposed. Satellite DNA- , molecules (Hn8- ,, Hn40- , and Hn41- ,) were found to be associated with Hn8, Hn40 and Hn41 and their complete nucleotide sequences were determined. Sequence analysis showed that Hn8- ,, Hn40- , and Hn41- , shared more than 84% nucleotide sequence identity, and they were different from other characterized DNA- ,, sharing the highest nucleotide sequence identity (47.8%) with DNA- , of Ageratum yellow vein virus. [source]


Molecular approach to aquatic environmental bioreporting: differential response to environmental inducers of cytochrome P450 monooxygenase genes in the detritivorous subalpine planktonic Crustacea, Daphnia pulex

MOLECULAR ECOLOGY, Issue 9 2003
P. David
Abstract In order to examine the usefulness of detoxifying genes as molecular markers in different chemical environments, isolation of cytochrome P450 genes (CYPs) belonging to the CYP4 family was performed in different samples from two subalpine populations of Daphnia pulex. The use of degenerate primers allowed us to isolate seven cDNAs. Four of them were assigned to the CYP4C subfamily, and were closely related to previously isolated crustacean CYP4s while the others were assigned to new CYP4AN and CYP4AP subfamilies. Expression studies, using semiquantitative polymerase chain reaction (PCR) followed by Southern blot hybridization with specific probes revealed differences in CYP4C32 and CYP4AP1 expressions between the two populations, which differ in the polyphenol richness of the vegetation surrounding their aquatic habitat. Further exposure to toxic dietary polyphenols showed different CYP induction patterns. Taken together, these preliminary results suggest a possible involvement of CYP4s in the ecological differentiation of subalpine D. pulex populations related to the polyphenol richness of the environmental vegetation. CYP4s may thus be considered as possible molecular markers in aquatic environmental bioreporting. [source]


Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium

MOLECULAR ECOLOGY RESOURCES, Issue 2009
SCOTT R. GILMORE
Abstract Using data from published mitochondrial or complete genomes, we developed and tested primers for amplification and sequencing of the barcode region of cytochrome oxidase 1 (COX1) of the fungal genus Fusarium, related genera of the order Hypocreales, and degenerate primers for fungi in the subdivision Pezizomycotina. The primers were successful for amplifying and sequencing COX1 barcodes from 13 genera of Hypocreales (Acremonium, Beauveria, Clonostachys, Emericellopsis, Fusarium, Gliocladium, Hypocrea, Lanatonectria, Lecanicillium, Metarhizium, Monocillium, Neonectria and Stilbella), 22 taxa of Fusarium, and two genera in other orders (Arthrosporium, Monilochaetes). Parologous copies of COX1 occurred in several strains of Fusarium. In some, copies of the same length were detected either by heterozygous bases in otherwise clean sequences or in different replicates of amplification and sequencing events; this may indicate multiple transcribed copies. Other strains included one or two introns. Two intron insertion sites had at least two nonhomologous intron sequences among Fusarium species. Irrespective of whether the multiple copy issue could be resolved by sequencing RNA transcripts, developing a precise COX1 -based barcoding system for Fusarium may not be feasible. The overall divergence among homologous COX1 sequences obtained so far is rather low, with many species sharing identical sequences. [source]


Universal primer cocktails for fish DNA barcoding

MOLECULAR ECOLOGY RESOURCES, Issue 4 2007
NATALIA V. IVANOVA
Abstract Reliable recovery of the 5, region of the cytochrome c oxidase 1 (COI) gene is critical for the ongoing effort to gather DNA barcodes for all fish species. In this study, we develop and test primer cocktails with a view towards increasing the efficiency of barcode recovery. Specifically, we evaluate the success of polymerase chain reaction amplification and the quality of resultant sequences using three primer cocktails on DNA extracts from representatives of 94 fish families. Our results show that M13-tailed primer cocktails are more effective than conventional degenerate primers, allowing barcode work on taxonomically diverse samples to be carried out in a high-throughput fashion. [source]


The impact of ectomycorrhiza formation on monosaccharide transporter gene expression in poplar roots

NEW PHYTOLOGIST, Issue 1 2004
Nina Grunze
Summary ,,By using degenerate primers, five putative poplar monosaccharide transporter genes were isolated from ectomycorrhizas by RT-PCR. The expression profiles of the three most strongly expressed ones are presented in detail. ,,Two transporter genes (PttMST1.2 and PttMST2.2) were down-regulated by ectomycorrhiza formation. However, PttMST3.1, which showed 10-times higher expression rates in noninfected roots than any other transporter gene, was up-regulated 12-fold in mycorrhizas. ,,While changes in PttMST1.2 and PttMST2.2 expression might be regulated by a fungal metabolite present in axenically grown hyphae, the strong increase of PttMST3.1 expression in mycorrhizas required active plant,fungus interaction. ,,Up-regulation of PttMST3.1 by mycorrhiza formation suggests that root cells are able to compete with fungal hyphae for hexoses from the common apoplast during symbiosis, redirecting the sugar-flux back into plant cells whenever the fungal partner does not supply sufficient mineral nutrients. Such a mechanism would enable the plant to link nutrient supply and fungal carbon support at a local level. [source]


Ultraviolet-A and -B Differentially Modify the Tyrosine-Kinase Profile of Human Keratinocytes and Induce the Expression of Arg,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2008
Gabriele Klosner
To investigate the expression profile of protein tyrosine kinases (PTKs) in normal human epidermal keratinocytes (NHEK) in response to UVA and UVB we employed a reversed transcriptase polymerase chain reaction (PCR) approach using degenerate primers derived from the conserved catalytic domain of PTKs. Quantitative real-time PCR with specific primers was used to confirm the influence of UV on the expression of the identified PTKs. Arg (Abelson-related gene, Abl2) was the PTK with the highest prevalence (30% of all PTKs) and UVA led to a further induction of Arg expression reaching nine-fold mRNA baseline expression at 17 h after irradiation. UVB was followed by an initial downregulation and a subsequent increase in Arg mRNA reaching five-fold baseline levels after 24 h. We conclude that UVA and UVB differentially modify the expression of PTKs in NHEK, and that Arg appears to have a major role in the response of keratinocytes to UV. These results provide a basis for further studies of PTK in UV-induced signaling that regulates protective responses, cell growth and carcinogenesis in the skin. [source]


Detection of Strawberry crinkle virus in plants and aphids by RT-PCR using conserved L gene sequences

PLANT PATHOLOGY, Issue 3 2002
K. I. Posthuma
About 10% of the large (L) protein gene of Strawberry crinkle virus (SCV) was sequenced after amplification with degenerate primers designed to conserved regions of the rhabdovirus L protein. The virus sequence was extended to 1362 nucleotides through rapid amplification of cDNA ends. One pair of degenerate L gene primers amplified a 683-bp fragment from four different isolates of SCV cultured in the experimental host Physalis pubescens; the nucleotide sequences of these fragments differed by < 1% to 10% indicating the suitability of this region as a diagnostic target. This information enabled the development of a reverse transcription polymerase chain reaction (RT-PCR) detection method for SCV using primers designed to the L gene sequence. SCV was amplified from infected P. pubescens (573 bp fragment) and from infected Chaetosiphon fragaefolii aphids (770 bp fragment). SCV was also detected by RT-PCR in total RNA extracts from three strawberry plants showing symptoms typical of SCV infection but failed when the intensity of the disease symptoms decreased. However, both SCV positive-sense RNA, and negative-sense genomic RNA, were detected by nested PCR in chronically infected strawberry plants sampled in September. [source]


Structural-based mutational analysis of d -aminoacylase from Alcaligenes faecalis DA1

PROTEIN SCIENCE, Issue 11 2002
Cheng-Sheng Hsu
Abstract d -Aminoacylase is an attractive candidate for commercial production of d -amino acids through its catalysis in the zinc-assistant hydrolysis of N -acyl- d -amino acids. We report here the cloning, expression, and structural-based mutation of the d -aminoacylase from Alcaligenes faecalis DA1. A 1,007-bp PCR product amplified with degenerate primers, was used to isolate a 4-kb genomic fragment, encoding a 484-residue d -aminoacylase. The enzyme amino-terminal segment shared significant homology within a variety of enzymes including urease. The structural fold was predicted by 3D-PSSM to be similar to urease and dihydroorotase, which have grouped into a novel ,/,-barrel amidohydrolase superfamily with a virtually indistinguishable binuclear metal centers containing six ligands, four histidines, one aspartate, and one carboxylated lysine. Three histidines, His-67, His-69, and His-250, putative metal ligands in d -aminoacylase, have been mutated previously, the remaining histidine (His-220) and aspartate (Asp-366) Asp-65, and four cysteines were then characterized. Substitution of Asp-65, Cys-96, His-220, and Asp-366 with alanine abolished the enzyme activity. The H220A mutant bound approximately half the normal complement of zinc ion as did H250N. However, the C96A mutant showed little zinc-binding ability, revealing that Cys-96 may replace the carboxylated lysine to serve as a bridging ligand. According to the urease structure, the conserved amino-terminal segment including Asp-65 may be responsible for structural stabilization. [source]


Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum

ANNALS OF APPLIED BIOLOGY, Issue 1 2000
L F SALAZAR
Summary Sporadic outbreaks of potato yellow vein disease (PYVD) were first observed in the early 1940's by potato growers in Antioquia, Colombia. Long known to be transmitted by the greenhouse whitefly (Trialeurodes vaporariorum), the precise identity of its causal agent (presumably viral in nature) has remained obscure. Here, we present evidence that a closterovirus with a bipartite genome, potato yellow vein virus (PYVV), is associated with PYVD. Electrophoretic analysis revealed that diseased tissue contains 4,5 disease-specific dsRNAs ranging in size from c. 9 000,1 800 bp. RT-PCR reactions containing pairs of degenerate primers directed against conserved motifs in the closterovirus heat-shock protein homologue produced products of the expected sizes. Comparison of the corresponding amino acid sequences revealed striking similarities between PYVV and two bipartite, whitefly-transmitted criniviruses, Cucurbit yellow stunting disorder and Tomato chlorosis viruses. Epidemiological surveys carried out in Rionegro, Colombia identified Polygonum mepalense, Polygonum spp., Rumex obtusifolium, Tagetes spp., and Catharanthus roseus as potential viral reservoirs. PYVV is transmitted through tubers, and visual symptoms alone cannot be used to determine infection status. A sensitive hybridisation-based assay for PYVV has been developed for use in seed certification programmes. [source]


Abundance of sulphur-oxidizing bacteria in coastal aquaculture using soxB gene analyses

AQUACULTURE RESEARCH, Issue 9 2010
Kishore K Krishnani
Abstract Molecular techniques based on sequencing of metagenomic clone libraries provide an insight into the diversity of microbial populations. Using nucleic acid-based methods, the diversity of soxB genes was examined to detect and characterize sulphur-oxidizing bacteria in Indian coastal aquaculture environments. Gene-specific degenerate primers were used to amplify various fragments (710, 753, 483,503, 280 and 239 bp) of soxB genes. Metagenomic clone libraries were constructed for 753, 483,503 and 239 bp fragments of soxB genes. The abundance of soxB revealed the presence of sulphur-oxidizing organisms. Amino acids in parts of the soxB -encoded proteins were aligned to known conserved amino acid residues. The level of conservation ranged from 23% to 30%. A phylogenetic tree constructed from aligned amino acid sequences of SoxB revealed different clusters associated with the branches of phototrophic ,- and ,-proteobacteria. In general, soxB is widespread among the various phylogenetic groups, although this does not necessarily mean that the organism can use sulphur compounds. Our results suggest that the chemolithoautotrophy based on sulphur oxidation in coastal aquaculture is primarily sustained by the presence of sulphur oxidizers, which involve the soxB gene. This study aids identification of the phylogenetic characteristics related to sulphur bioremediation in poorly characterized coastal aquaculture environments. [source]


Molecular characterization of mariner -like elements in emerald ash borer, Agrilus planipennis (Coleoptera, Polyphaga)

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2010
L. Rivera-Vega
Abstract Emerald ash borer (EAB, Agrilus planipennis), an exotic invasive pest, has killed millions of ash trees (Fraxinus spp.) in North America and continues to threaten the very survival of the entire Fraxinus genus. Despite its high-impact status, to date very little knowledge exists for this devastating insect pest at the molecular level. Mariner-like elements (MLEs) are transposable elements, which are ubiquitous in occurrence in insects and other invertebrates. Because of their low specificity and broad host range, they can be used for epitope-tagging, gene mapping, and in vitro mutagenesis. The majority of the known MLEs are inactive due to in-frame shifts and stop codons within the open reading frame (ORF). We report on the cloning and characterization of two MLEs in A. planipennis genome (Apmar1 and Apmar2). Southern analysis indicated a very high copy number for Apmar1 and a moderate copy number for Apmar2. Phylogenetic analysis revealed that both elements belong to the irritans subfamily. Based on the high copy number for Apmar1, the full-length sequence was obtained using degenerate primers designed to the inverted terminal repeat (ITR) sequences of irritans MLEs. The recovered nucleotide sequence for Apmar1 consisted of 1,292 bases with perfect ITRs, and an ORF of 1,050 bases encoding a putative transposase of 349 amino acids. The deduced amino acid sequence of Apmar1 contained the conserved regions of mariner transposases including WVPHEL and YSPDLAP, and the D,D(34)D motif. Both Apmar1 and Apmar2 could represent useful genetic tools and provide insights on EAB adaptation. © 2010 Wiley Periodicals, Inc. [source]


Up-regulation of lysozyme gene expression during metamorphosis and immune challenge of the cotton bollworm, Helicoverpa armigera

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2009
Yong Zhang
Abstract Lysozymes act as crucial bacteriolytic enzymes in insect immune system by hydrolyzing the , (1,4) bonds between N-acetylglucosamine and N-acetylmuramic acid in the peptidoglycan of prokaryotic cell walls. We have isolated and characterized a Helicoverpa armigera cDNA encoding an insect lysozyme named HaLyz. We amplified a fragment by PCR, using degenerate primers derived from the conservative amino acid sequences for performing 5, and 3, RACE. The full-length cDNA was 661 base pairs. The theoretical pI and molecular weight of the protein were computed to be 9.08 and 15.6 kDa, respectively. Prokaryotic expression of the HaLyz ORF by Escherichia coli confirmed the calculated molecular weight of the protein. The deduced 135 amino acids showed high homology with known lysozymes from other insects, ranging from 47% to 89% by BLASTp search in NCBI. Analyses revealed that this protein has a typical lysozyme C signature among amino acids 93,111, CNVTCAEMLLDDITKASTC. An interesting relation between immunity and larva to pupa metamorphosis in insects was discovered. Real time-PCR showed that HaLyz gene expression was transiently enhanced at the onset of metamorphosis of the cotton bollworm, Helicoverpa armigera. The gene expression was up-regulated after the injection of E. coli or entomopathogenic fungi, Beauveria bassiana, but showed different expression patterns. Arch. Insect Biochem. Physiol. 2008. © 2008 Wiley-Liss, Inc. [source]


Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2005
Ying Zhu
Abstract Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium, producing butyrate and acetate as its main fermentation products. In order to decrease acetate and increase butyrate production, integrational mutagenesis was used to disrupt the gene associated with the acetate formation pathway in C. tyrobutyricum. A nonreplicative integrational plasmid containing the phosphotransacetylase gene (pta) fragment cloned from C. tyrobutyricum by using degenerate primers and an erythromycin resistance cassette were constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome inactivated the target pta gene and produced the pta -deleted mutant (PTA-Em), which was confirmed by Southern hybridization. SDS-PAGE and two-dimensional protein electrophoresis results indicated that protein expression was changed in the mutant. Enzyme activity assays using the cell lysate showed that the activities of PTA and acetate kinase (AK) in the mutant were reduced by more than 60% for PTA and 80% for AK. The mutant grew more slowly in batch fermentation with glucose as the substrate but produced 15% more butyrate and 14% less acetate as compared to the wild-type strain. Its butyrate productivity was approximately 2-fold higher than the wild-type strain. Moreover, the mutant showed much higher tolerance to butyrate inhibition, and the final butyrate concentration was improved by 68%. However, inactivation of pta gene did not completely eliminate acetate production in the fermentation, suggesting the existence of other enzymes (or pathways) also leading to acetate formation. This is the first-reported genetic engineering study demonstrating the feasibility of using a gene-inactivation technique to manipulate the acetic acid formation pathway in C. tyrobutyricum in order to improve butyric acid production from glucose. © 2005 Wiley Periodicals, Inc. [source]


Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2008
Daniël C. De Geus
Chlorite dismutase, a homotetrameric haem-based protein, is one of the key enzymes of (per)chlorate-reducing bacteria. It is highly active (>2,kU,mg,1) in reducing the toxic compound chlorite to the innocuous chloride anion and molecular oxygen. Chlorite itself is produced as the intermediate product of (per)chlorate reduction. The chlorite dismutase gene in Azospira oryzae strain GR-1 employing degenerate primers has been identified and the active enzyme was subsequently overexpressed in Escherichia coli. Chlorite dismutase was purified, proven to be active and crystallized using sitting drops with PEG 2000 MME, KSCN and ammonium sulfate as precipitants. The crystals belonged to space group P21212 and were most likely to contain six subunits in the asymmetric unit. The refined unit-cell parameters were a = 164.46, b = 169.34, c = 60.79,Å. The crystals diffracted X-rays to 2.1,Å resolution on a synchrotron-radiation source and a three-wavelength MAD data set has been collected. Determination of the chlorite dismutase structure will provide insights into the active site of the enzyme, for which no structures are currently available. [source]