Deep Cleft (deep + cleft)

Distribution by Scientific Domains


Selected Abstracts


Crystal structure of archaeal highly thermostable L -aspartate dehydrogenase/NAD/citrate ternary complex

FEBS JOURNAL, Issue 16 2007
Kazunari Yoneda
The crystal structure of the highly thermostable l -aspartate dehydrogenase (l -aspDH; EC 1.4.1.21) from the hyperthermophilic archaeon Archaeoglobus fulgidus was determined in the presence of NAD and a substrate analog, citrate. The dimeric structure of A. fulgidusl -aspDH was refined at a resolution of 1.9 Å with a crystallographic R -factor of 21.7% (Rfree = 22.6%). The structure indicates that each subunit consists of two domains separated by a deep cleft containing an active site. Structural comparison of the A. fulgidusl -aspDH/NAD/citrate ternary complex and the Thermotoga maritimal -aspDH/NAD binary complex showed that A. fulgidusl -aspDH assumes a closed conformation and that a large movement of the two loops takes place during substrate binding. Like T. maritimal -aspDH, the A. fulgidus enzyme is highly thermostable. But whereas a large number of inter- and intrasubunit ion pairs are responsible for the stability of A. fulgidusl -aspDH, a large number of inter- and intrasubunit aromatic pairs stabilize the T. maritima enzyme. Thus stabilization of these two l -aspDHs appears to be achieved in different ways. This is the first detailed description of substrate and coenzyme binding to l -aspDH and of the molecular basis of the high thermostability of a hyperthermophilic l -aspDH. [source]


The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis

PROTEIN SCIENCE, Issue 6 2000
Sha Ha
Abstract The 1.9 Å X-ray structure of a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis is reported. This enzyme, MurG, contains two ,/, open sheet domains separated by a deep cleft. Structural analysis suggests that the C-terminal domain contains the UDP-GlcNAc binding site while the N-terminal domain contains the acceptor binding site and likely membrane association site. Combined with sequence data from other MurG homologs, this structure provides insight into the residues that are important in substrate binding and catalysis. We have also noted that a conserved region found in many UDP-sugar transferases maps to a ,/,/,/, supersecondary structural motif in the donor binding region of MurG, an observation that may be helpful in glycosyltransferase structure prediction. The identification of a conserved structural motif involved in donor binding in different UDP-sugar transferases also suggests that it may be possible to identify,and perhaps alter,the residues that help determine donor specificity. [source]


Apo and ligand-bound structures of ModA from the archaeon Methanosarcina acetivorans

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2010
Sum Chan
The trace-element oxyanion molybdate, which is required for the growth of many bacterial and archaeal species, is transported into the cell by an ATP-binding cassette (ABC) transporter superfamily uptake system called ModABC. ModABC consists of the ModA periplasmic solute-binding protein, the integral membrane-transport protein ModB and the ATP-binding and hydrolysis cassette protein ModC. In this study, X-ray crystal structures of ModA from the archaeon Methanosarcina acetivorans (MaModA) have been determined in the apoprotein conformation at 1.95 and 1.69,Å resolution and in the molybdate-bound conformation at 2.25 and 2.45,Å resolution. The overall domain structure of MaModA is similar to other ModA proteins in that it has a bilobal structure in which two mixed ,/, domains are linked by a hinge region. The apo MaModA is the first unliganded archaeal ModA structure to be determined: it exhibits a deep cleft between the two domains and confirms that upon binding ligand one domain is rotated towards the other by a hinge-bending motion, which is consistent with the `Venus flytrap' model seen for bacterial-type periplasmic binding proteins. In contrast to the bacterial ModA structures, which have tetrahedral coordination of their metal substrates, molybdate-bound MaModA employs octahedral coordination of its substrate like other archaeal ModA proteins. [source]


Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S -adenosyl- l -homocysteine

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2005
Augen A. Pioszak
The Thermus thermophilus hypothetical protein TTHA1280 belongs to a family of predicted S -adenosyl- l -methionine (AdoMet) dependent RNA methyltransferases (MTases) present in many bacterial and archaeal species. Inspection of amino-acid sequence motifs common to class I Rossmann-fold-like MTases suggested a specific role as an RNA 5-methyluridine MTase. Selenomethionine (SeMet) labelled and native versions of the protein were expressed, purified and crystallized. Two crystal forms of the SeMet-labelled apoprotein were obtained: SeMet-ApoI and SeMet-ApoII. Cocrystallization of the native protein with S -­adenosyl- l -homocysteine (AdoHcy) yielded a third crystal form, Native-AdoHcy. The SeMet-ApoI structure was solved by the multiple anomalous dispersion method and refined at 2.55,Å resolution. The SeMet-ApoII and Native-AdoHcy structures were solved by molecular replacement and refined at 1.80 and 2.60,Å, respectively. TTHA1280 formed a homodimer in the crystals and in solution. Each subunit folds into a three-domain structure composed of a small N-terminal PUA domain, a central ,/,-domain and a C-terminal Rossmann-fold-like MTase domain. The three domains form an overall clamp-like shape, with the putative active site facing a deep cleft. The architecture of the active site is consistent with specific recognition of uridine and catalysis of methyl transfer to the 5-carbon position. The cleft is suitable in size and charge distribution for binding single-stranded RNA. [source]