Additional Role (additional + role)

Distribution by Scientific Domains


Selected Abstracts


Nanoscale Structural and Electronic Properties of Ultrathin Blends of Two Polyaromatic Molecules: A Kelvin Probe Force Microscopy Investigation

CHEMPHYSCHEM, Issue 4 2006
Vincenzo Palermo Dr.
Abstract We describe a Kelvin Probe Force Microscopy (KPFM) study on the morphological and electronic properties of complex mono and bi-molecular ultrathin films self-assembled on mica. These architectures are made up from an electron-donor (D), a synthetic all-benzenoid polycyclic aromatic hydrocarbon, and an electron-acceptor (A), perylene-bis-dicarboximide. The former molecule self-assembles into fibers in single component films, while the latter molecule forms discontinuous layers. Taking advantage of the different solubility and self-organizing properties of the A and D molecules, multicomponent ultrathin films characterized by nanoscale phase segregated fibers of D embedded in a discontinuous layer of A are formed. The direct estimation of the surface potential, and consequently the local workfunction from KPFM images allow a comparison of the local electronic properties of the blend with those of the monocomponent films. A change in the average workfunction values of the A and D nanostructures in the blend occurs which is primarily caused by the intimate contact between the two components and the molecular order within the nanostructure self-assembled at the surface. Additional roles can be ascribed to the molecular packing density, to the presence of defects in the film, to the different conformation of the aliphatic peripheral chains that might cover the conjugated core and to the long-range nature of the electrostatic interactions employed to map the surface by KPFM limiting the spatial and potential resolution. The local workfunction studies of heterojunctions can be of help to tune the electronic properties of active multicomponent films, which is crucial for the fabrication of efficient organic electronic devices as solar cells. [source]


Consistent spatial patterns across biogeographic gradients in temperate reef fishes

ECOGRAPHY, Issue 1 2008
Maren Wellenreuther
Biogeographic gradients may facilitate divergent evolution between populations of the same species, leading to geographic variation and possibly reproductive isolation. Previous work has shown that New Zealand triplefin species (family Tripterygiidae) have diversified in habitat use, however, knowledge about the consistency of this pattern throughout their geographic range is lacking. Here we examine the spatial habitat associations of 15 New Zealand triplefin species at nine locations on a latitudinal gradient from 35°50,S to 46°70,S to establish whether distant populations differ in habitat use. Triplefin diversity and density varied between locations, as did habitat variables such as percentage cover of the substratum, onshore-offshore location, microposition, depth and exposure. Canonical discriminant analysis identified specific species-habitat combinations, and when habitat was statistically partialled from location, most species exhibited consistent habitat associations throughout their range. However, the density of a few species at some locations was lower or higher than expected given the habitat availability. This indicates that the habitat variables recorded were not the sole predictors of assemblage structure, and it is likely that factors influencing larval dispersal (e.g. the low salinity layer in Fiordland and geographic isolation of the Three Kings Islands) play an additional role in structuring assemblage composition. Together these results suggest that New Zealand triplefin species show strong and consistent habitat use across potential biogeographical barriers, but this pattern appears to be modified by variation in larval supply and survival. This indicates that species with broad geographic distributions do not necessarily show phenotypic variation between populations. [source]


Cell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2009
Monique E. Quaedackers
Abstract Mesenchymal stromal cells regulate immune cell function via the secretion of soluble factors. Cell membrane interactions between these cell types may play an additional role. Here, we demonstrate that subpopulations of allo-activated T cells are capable of binding to human adipose-derived stromal cells (ASC). The bound T-cell population contained CD8+ T cells and was enriched for CD4,CD8, T cells, whereas the proportion of CD4+ T cells was decreased compared with the non-bound T-cell population. Bound CD4+ T cells had high proliferative activity and increased CD25 and FoxP3 expression. However, they also expressed CD127, excluding regulatory T-cell function. In CD8+ T cells, IL-2 sensitivity, as determined by the analysis of phosphorylated STAT5, was lower in the presence of ASC and even lower in bound cells. In contrast, IL-2-induced phosphorylated STAT5 levels were higher in bound CD4+ T cells than in non-bound CD4+ T cells. Additionally, pro-proliferative TGF-, signalling via endoglin and SMAD1/5/8 phosphorylation was detected in bound CD4+ T cells. Even after prolonged co-culture with ASC, the activated phenotype of bound CD4+ T cells persisted. In conclusion, these results demonstrate that the binding of lymphocytes to ASC represents an immunomodulatory mechanism in which CD8+ T cells are inhibited in their responsiveness to pro-inflammatory stimuli and reactive CD4+ T cells are depleted from the immune response. [source]


Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis

FEBS JOURNAL, Issue 13 2003
Susan Aiston
Multiple signalling pathways are involved in the mechanism by which insulin stimulates hepatic glycogen synthesis. In this study we used selective inhibitors of glycogen synthase kinase-3 (GSK-3) and an allosteric inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a, to determine the relative contributions of inactivation of GSK-3 and dephosphorylation of phosphorylase a as alternative pathways in the stimulation of glycogen synthesis by insulin in hepatocytes. GSK-3 inhibitors (SB-216763 and Li+) caused a greater activation of glycogen synthase than insulin (90% vs. 40%) but a smaller stimulation of glycogen synthesis (30% vs. 150%). The contribution of GSK-3 inactivation to insulin stimulation of glycogen synthesis was estimated to be less than 20%. Dephosphorylation of phosphorylase a with CP-91149 caused activation of glycogen synthase and translocation of the protein from a soluble to a particulate fraction and mimicked the stimulation of glycogen synthesis by insulin. The stimulation of glycogen synthesis by phosphorylase inactivation cannot be explained by either inhibition of glycogen degradation or activation of glycogen synthase alone and suggests an additional role for translocation of synthase. Titrations with the phosphorylase inactivator showed that stimulation of glycogen synthesis by insulin can be largely accounted for by inactivation of phosphorylase over a wide range of activities of phosphorylase a. We conclude that a signalling pathway involving dephosphorylation of phosphorylase a leading to both activation and translocation of glycogen synthase is a critical component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Selective inactivation of phosphorylase can mimic insulin stimulation of hepatic glycogen synthesis. [source]


Literary Discussions and Advanced Speaking Functions: Researching the (Dis) Connection

FOREIGN LANGUAGE ANNALS, Issue 2 2004
Richard Donato PhD
Motivating this study was the need for research to determine how discussion in advanced undergraduate literature courses provides discourse opportunities to students to develop advanced language functions, as defined in the ACTFL Guidelines. Despite claims that literature classes play an additional role in developing language proficiency, this issue has not received serious research attention. In this study, classroom transcripts were analyzed for the following features: (1) discourse structure of the literary discussion; (2) the use of teacher questions; (3) verb tense distribution; and (4) student uptake. The analysis attempted to uncover how literary discussion afforded opportunities for students to describe, to narrate in major timeframes, to use extended discourse, to share opinions and arguments, to explore alternatives, and to hypothesize,all advanced and superior level speaking functions. The study also included instructor and student interviews to determine their views of foreign language literature classes and to see if what was observed could be explained by the goals the instructor and students had expressed. The findings suggest that simply having a literary discussion does not ensure that students will be pushed to use the language in advanced ways even when faced with tasks requiring critical thinking and advanced language use. One issue that this study reveals is that, for students to experience speaking in the advanced ranges of proficiency, discussions must enable complex thinking in complex language. Other findings suggest that literature instructors should be aware of the discourse opportunities that arise in literary discussions, should make speaking expectations and advanced functions clear to students, and should monitor student language use during discussions. [source]


Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations

GLOBAL CHANGE BIOLOGY, Issue 7 2003
SANDY P. HARRISON
Abstract The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate. [source]


Autophagy and adaptive immunity

IMMUNOLOGY, Issue 1 2010
Victoria L. Crotzer
Summary Autophagy plays an important role in maintaining intracellular homeostasis by promoting the transit of cytoplasmic material, such as proteins, organelles and pathogens, for degradation within acidic organelles. Yet, in immune cells, autophagy pathways serve an additional role in facilitating intracellular surveillance for pathogens and changes in self. Autophagy pathways can modulate key steps in the development of innate and adaptive immunity. In terms of adaptive immunity, autophagy regulates the development and survival of lymphocytes as well as the modulation of antigen processing and presentation. Specialized forms of autophagy may be induced by some viral pathogens, providing a novel route for major histocompatibility complex (MHC) class I antigen presentation and enhanced CD8+ T-cell responses. Autophagy induction in target cells also increases their potential to serve as immunogens for dendritic cell cross-presentation to CD8+ T cells. The requirement for autophagy in MHC class II presentation of cytoplasmic and nuclear antigens is well established, yet recent studies also point to a critical role for autophagy in modulating CD4+ T-cell responses to phagocytosed pathogens. Autophagy pathways can also modulate the selection and survival of some CD4+ T cells in the thymus. However, much still remains to be learned mechanistically with respect to how autophagy and autophagy-linked genes regulate pathogen recognition and antigen presentation, as well as the development and survival of immune cells. [source]


Expression of a pheromone receptor in ovipositor sensilla of the female moth (Heliothis virescens)

INSECT MOLECULAR BIOLOGY, Issue 4 2009
P. Widmayer
Abstract Female moths release pheromones that influence various behavioral and physiological processes. The highly specific responses elicited by pheromones are mediated via specific chemosensory proteins, pheromone binding proteins and chemoreceptors, operating in the antennal sensory neurons. In Heliothis virescens, the response to the major pheromone component (Z)-11-hexadecenal (Z11-16:Al) is mediated by the pheromone binding protein PBP2 and the receptor type HR13. PCR experiments revealed that transcripts for relevant chemosensory molecules are also present in the abdomen suggesting an additional role. In the female, mRNA for HR13 as well as for the related PBP2 was found in the ovipositor tip and in an immunohistochemical analysis with a specific antiserum it was possible to visualize the receptor protein in distinct sensilla types surrounding the ovipositor tip. The expression of HR13 implies a chemosensory responsiveness of these sensilla types to pheromones possibly provided by PBP2. Due to the close vicinity of sensillar HR13 cells and pheromone producing cells in the ovipositor we propose that the HR13 cells might mediate abdominal responses to the emitted pheromones. [source]


Identification of genes up-regulated by retinoic-acid-induced differentiation of the human neuronal precursor cell line NTERA-2 cl.D1

JOURNAL OF NEUROCHEMISTRY, Issue 3 2001
Frank Leypoldt
The human teratocarcinoma cell line NTERA-2 cl.D1 (NT2 cells) can be induced with retinoic acid and cell aggregation to yield postmitotic neurones. This seems to model the in vivo situation, as high concentrations of retinoic acid, retinoic acid binding proteins, and receptors have been detected in the embryonic CNS and the developing spinal cord suggesting a role for retinoic acid in neurogenesis. Suppression subtractive hybridization was used to detect genes up-regulated by this paradigm of neuronal differentiation. Microfibril-associated glycoprotein 2 was found to be drastically up-regulated and has not been implicated in neuronal differentiation before. Suppression subtractive hybridization also identified DYRK4, a homologue of the Drosophila gene minibrain. Minibrain mutations result in specific defects in the development of the fly central nervous system. In adult rats, DYRK4 is only expressed in testis, but our results suggest an additional role for DYRK4 in neuronal differentiation. We have shown that suppression subtractive hybridization in conjunction with an efficient screening procedure is a valuable tool to produce a repertoire of differentially expressed genes and propose a new physiological role for several identified genes and expressed sequence tags. [source]


CHAOTIC DYNAMICS OF FINANCING INVESTMENT

METROECONOMICA, Issue 1 2005
Soumya Datta
ABSTRACT The paper introduces the financial sector in a standard multiplier-accelerator framework by incorporating financial variables in the investment function. The resultant equation is similar in form to that of a logistic map, and hence behaves unpredictably under certain values of the parameters. Since monetary authorities have a large influence on many of these parameters, monetary policies are effective in both controlling investment and preventing or postponing a financial crisis. The monetary authorities, however, are also keen to play an additional role of keeping the system predictable. Under certain conditions, there could be a conflict between these two objectives,of preventing a financial crisis and keeping the system predictable. [source]


Cell wall growth during elongation and division: one ring to bind them?

MOLECULAR MICROBIOLOGY, Issue 4 2007
Dirk-Jan Scheffers
Summary The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. In this issue of Molecular Microbiology, the groups of Christine Jacobs-Wagner and Waldemar Vollmer provide compelling evidence that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis in non-dividing cells. During elongation (cell growth) FtsZ is responsible for the incorporation of CW material in a zone at the midcell by recruiting MurG, a protein involved in peptidoglycan (PG) precursor synthesis. This resembles earlier findings of FtsZ mediated PG synthesis activity in Escherichia coli. A role of FtsZ in PG synthesis during elongation forces a rethink of the current model of CW synthesis in rod-shaped bacteria. [source]


Eomesodermin is expressed in mouse oocytes and pre-implantation embryos

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2005
Josie McConnell
Abstract T-box genes are a highly conserved family of genes encoding transcription factors, which share a conserved DNA binding domain (the T-box). Appropriate temporal and spatial expression of this gene family is critical for gastrulation and organogenesis in a number of species. The T-box containing gene Eomesodermin was first identified in Xenopus, where it plays a critical role in mesoderm formation. In situ analyses in mice have described the expression patterns of the mouse ortholog of this gene mEomesodermin (mEomes) at the time of implantation and during fetal development. Additional studies involving the disruption of the mEomes gene, have demonstrated an additional role for mEomes in trophoblast formation. However, these analyses did not address the possibility that maternally encoded or pre-blastocyst zygotic transcription of mEomes may also contribute to embryonic development. We show here that mEomes mRNA is present prior to blastocyst formation, and that the protein product of mEomes is associated with nuclear DNA during oocyte development and persistently localizes within all nuclei of the preimplantation embryo until the early blastocyst stage. mEomes protein is associated with the meiotic spindle in the unfertilized egg and with the mitotic spindle at each cell division. Our results are consistent with mEomesodermin having a role in early preimplantation development and inner cell mass formation in addition to its function in the trophoblast lineage. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source]


Electrophysiological evidence for altered early cerebral somatosensory signal processing in schizophrenia

PSYCHOPHYSIOLOGY, Issue 3 2004
Till D. Waberski
Abstract Various studies have indicated an impairment of sensory signal processing in schizophrenic patients. Anatomical and functional imaging studies have indicated morphological and metabolic abnormalities in the thalamus in schizophrenia. Other results give evidence for an additional role of cortical dysfunction in sensory processing in schizophrenia. Advanced analysis of human median nerve somatosensory evoked potentials (SEPs) reveals a brief oscillatory burst of low-amplitude and high-frequency activity (,600 Hz), the so-called high frequency oscillations (HFOs). The present study explores the behavior of HFOs in a cohort of schizophrenic patients in comparison to a group of controls. HFOs in the group of patients appeared with a delayed latency. In the low-frequency part of the SEPs an increase in amplitude was found. These results are interpreted to reflect a lack of somatosensory inhibition in the somatosensory pathway, either at a thalamic or a cortical level. [source]


Evolution of jaw depression mechanics in aquatic vertebrates: insights from Ghondrichthyes

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2000
CHERYL D. WILGA
The widely accepted phylogenctic position of Chondrichthyes as the sister group to all other living gnathostomes makes biomechanical analyses of this group of special significance for estimates of skull function in early jawed vertebrates. We review key findings of recent experimental research on the feeding mechanisms of living elasmobranchs with respect to our understanding of jaw depression mechanisms in gnathostome vertebrates. We introduce the possibility that the ancestral jaw depression mechanism in gnathostomes was mediated by the coracomandibularis muscle and that for hyoid depression by the coracohyoideus muscle, as in modern Chondrichthyes and possibly placoderms. This mechanism of jaw depression appears to have been replaced by the sternohyoideus (homologous to the coracohyoideus) coupling in Osteichthycs following the split of this lineage from Chondrichthyes. Concurrent with the replacement of the branchiomandibularis (homologous to the coracomandibularis) coupling by the sternohyoideus coupling as the dominant mechanism of jaw depression in Osteichthyes was the fusion and shift in attachment of the intcrhyoideus and intermandibularis muscles (producing the protractor hyoideus muscle, mistakenly refereed to as the geniohyoideus), which resulted in a more diversified role of the sternohyoideus coupling in Osteichthyes. The coracohyoideus coupling appears to have been already present in vertebrates where it functioned in hyoid depression, as in modern Chondrichthyes, before it acquired the additional role of jaw depression in Osteichthyes. [source]


Immunohistological study of infiltrated cells and cytokines in murine herpetic keratitis

ACTA OPHTHALMOLOGICA, Issue 5 2001
Tomoyuki Inoue
ABSTRACT. Purpose: To identify localization and kinetics of infiltrated cells and cytokines in murine herpetic keratitis. Methods: HSV-1 was inoculated onto the scarified BALB/c corneas. At given times post infection (PI), eyes were removed and studied immunohistochemically using monoclonal antibodies against several infiltrated cells and cytokines. Results: Neutrophils and NK cells infiltrated as early as 1 day PI reaching a maximum number at 2 day PI in initial stage. ,, TCR positive cells were observed in the corneal stroma from 1 day PI to 8 day PI. IL-2 and IFN-, were positive in the cell-infiltrated areas of the epithelial and stromal lesions, whereas IL-4 was negative throughout the experiment. Conclusion: Our results indicated that cytokine profile upon herpes infection on the cornea is Th1 dominant. Together with neutrophils in the early phase of infection, ,, positive T cells may play an additional role in protecting the cornea against incoming pathogens. [source]


Vitamin D and innate immunity

DERMATOLOGIC THERAPY, Issue 1 2010
Jeremiah Miller
ABSTRACT Vitamin D's role in bone health has been well established. Recently, studies have identified additional roles of vitamin D in the immune system, cardiovascular system, and cancer prevention. The effect of vitamin D on the immune system is particularly relevant to the dermatologist in that it has implications for atopic dermatitis, psoriasis, and skin cancer. However, there is much disagreement on a dose of vitamin D that is both safe and effective as both ultraviolet exposure and certain vitamin D-rich foods come with unwanted consequences. This review aims to update the dermatologist on the roles of vitamin D in the immune system, the safety and dose of different sources, and risk factors for vitamin D deficiency that may necessitate supplementation. Immune consequences of vitamin D status represent one additional aspect that illustrates how guidelines for supplementation are needed and will only be useful clinically if they are presented in context with validated controlled clinical trials. [source]


Neuroanatomical basis for therapeutic applications of cannabinoid receptor 1 antagonists

DRUG DEVELOPMENT RESEARCH, Issue 8 2009
Brian F. Thomas
Abstract The CB1 receptor is a Class A G-protein coupled receptor that has a high density and widespread distribution within the central nervous system. Because of its neuroanatomical distribution, the endocannabinoid system can modulate a wide variety of psychological and physiological functions. For example, CB1 receptors are found in brain regions regulating motor activity, cognitive processes, pain, satiety, appetitive behaviors and reward. In correspondence with this distribution, modulation of the endocannabinoid system has been shown to produce changes in coordination, executive function, memory, mood, perception, wakefulness, nociception and appetite. Administration of cannabinoid agonists has also been therapeutically used to reduce nausea, and is also known to decrease body temperature and neuronal excitability, pointing to additional roles for endocannabinoids in these and other physiological/neurological processes. The ongoing elucidation and characterization of the neuroanatomical circuitry within which the CB1 cannabinoid receptor and endocannabinoids are localized to modulate these psychological and physiological processes continues to suggest therapeutic applications for cannabinoid antagonists and inverse agonists. Drug Dev Res 70:527,554, 2009. © 2009 Wiley-Liss, Inc. [source]


Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death

FEBS JOURNAL, Issue 1 2010
Yao Lin
Death-associated protein kinase (DAPK) is a stress-regulated protein kinase that mediates a range of processes, including signal-induced cell death and autophagy. Although the kinase domain of DAPK has a range of substrates that mediate its signalling, the additional protein interaction domains of DAPK are relatively ill defined. This review will summarize our current knowledge of the DAPK interactome, the use of peptide aptamers to define novel protein,protein interaction motifs, and how these new protein,protein interactions give insight into DAPK functions in diverse cellular processes, including growth factor signalling, the regulation of autophagy, and its emerging role in the regulation of immune responses. [source]


Folding and turnover of human iron regulatory protein 1 depend on its subcellular localization

FEBS JOURNAL, Issue 4 2007
Alain Martelli
Aconitases are iron,sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase,iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron,sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and ,-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of ,-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1, mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron,sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1,KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family. [source]


Immune regulation by 4-1BB and 4-1BBL: complexities and challenges

IMMUNOLOGICAL REVIEWS, Issue 1 2009
Chao Wang
Summary:, The tumor necrosis factor receptor family member 4-1BB plays a key role in the survival of activated and memory CD8+ T cells. Depending on the disease model, 4-1BB can participate at different stages and influence different aspects of the immune response, likely due to the differential expression of receptor and ligand relative to other costimulatory molecules. Studies comparing mild versus severe influenza infection of mice suggest that the immune system uses inducible receptors such as 4-1BB to prolong the immune response when pathogens take longer to clear. The expression of 4-1BB on diverse cell types, evidence for bidirectional as well as receptor-independent signaling by 4-1BBL, the unexpected hyperproliferation of 4-1BB-deficient T cells, and complex effects of agonistic anti-4-1BB therapy have revealed additional roles for the 4-1BB/4-1BBL receptor/ligand pair in the immune system. In this review, we discuss these diverse roles of 4-1BB and its ligand in the immune response, exploring possible mechanisms for the observed complexities and implications for therapeutic applications of 4-1BB/4-1BBL. [source]


The aryl hydrocarbon receptor: a perspective on potential roles in the immune system

IMMUNOLOGY, Issue 3 2009
Emily A. Stevens
Summary The aryl hydrocarbon receptor (AHR) is a protein best known for its role in mediating toxicity. Over 30 years of research has uncovered additional roles for the AHR in xenobiotic metabolism and normal vascular development. Activation of the AHR has long been known to cause immunotoxicity, including thymic involution. Recent data suggesting a role for the AHR in regulatory T-cell (Treg) and T-helper 17 (Th17) cell development have only added to the excitement about this biology. In this review, we will attempt to illustrate what is currently known about AHR biology in the hope that data from fields as diverse as evolutionary biology and pharmacology will help elucidate the mechanism by which AHR modifies immune responses. We also will discuss the complexities of AHR pharmacology and genetics that may influence future studies of AHR in the immune system. [source]


Biological roles of translesion synthesis DNA polymerases in eubacteria

MOLECULAR MICROBIOLOGY, Issue 3 2010
Dan I. Andersson
Summary Biological systems are strongly selected to maintain the integrity of their genomes by prevention and repair of external and internal DNA damages. However, some types of DNA lesions persist and might block the replication apparatus. The universal existence of specialized translesion synthesis DNA polymerases (TLS polymerases) that can bypass such lesions in DNA implies that replication blockage is a general biological problem. We suggest that the primary function for which translesion synthesis polymerases are selected is to rescue cells from replication arrest at lesions in DNA, a situation that, if not amended, is likely to cause an immediate and severe reduction in cell fitness and survival. We will argue that the mutagenesis observed during translesion synthesis is an unavoidable secondary consequence of this primary function and not, as has been suggested, an evolved mechanism to increase mutation rates in response to various stresses. Finally, we will discuss recent data on additional roles for translesion synthesis polymerases in the formation of spontaneous deletions and in transcription-coupled TLS, where the coupling of transcription to TLS is proposed to allow the rescue of the transcription machinery arrested at DNA lesions. [source]


A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion

MOLECULAR MICROBIOLOGY, Issue 6 2004
Lian-Yong Gao
Summary Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871,Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host. [source]


Uterine secretion of ISP1 & 2 tryptases is regulated by progesterone and estrogen during pregnancy and the endometrial cycle

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2004
Colleen M. O'Sullivan
Abstract We have described two novel implantation serine proteinase (ISP) genes that are expressed during the implantation period. The ISP1 gene may encode the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching in vitro and the initiation of invasion. The ISP2 gene, which encodes a related tryptase, is expressed in endometrial glands and is regulated by progesterone during the peri-implantation period. Based on similarities between ISP2 gene expression and that of a progesterone-regulated lumenal serine proteinase activity associated with lysis of the zona pellucida, we have suggested that the strypsin related protein, ISP2, may encode a zona lysin proteinase. Recently strypsin has also been found within uterine fluid, suggesting a second potential role in hatching. Consistently, we have discovered that ISP1 is also expressed in the uterine secretory gland at the time of hatching. In this study we demonstrate that both ISP1 and ISP2 are secreted together into the uterine lumen at peri-implantation, and that the appearance of ISP protein is regulated positively at the transcriptional level by progesterone and negatively at the posttranscriptional level by estrogen. This negative regulation by estrogen may be overridden in pregnancy as ISP protein expression is restored during oil-induced decidualization. ISP1 and ISP2 proteins are also expressed in proestrous suggesting additional roles in the endometrial cycle. Mol. Reprod. Dev. 69: 252,259, 2004. © 2004 Wiley-Liss, Inc. [source]