Home About us Contact | |||
Additional Activities (additional + activity)
Selected AbstractsImpact of the Mutual Obligation Initiative on the Exit Behaviour of Unemployment Benefit Recipients: The Threat of Additional ActivitiesTHE ECONOMIC RECORD, Issue 243 2002Linda L. Richardson The Mutual Obligation Initiative requires young unemployment benefit recipients, who have received payments for 6 months, to undertake an activity, in addition to continuing to look for work, in return for those payments. The fact that eligibility for the Mutual Obligation Initiative is determined by age is exploited to evaluate the impact of this program on exit rates from benefit receipt as a natural experiment. Administrative data from the Department of Family and Community Services provides some evidence that individuals subject to the Mutual Obligation Initiative had higher exit rates immediately prior to imposition of the additional activity requirement. [source] Xnr2 and Xnr5 unprocessed proteins inhibit Wnt signaling upstream of dishevelledDEVELOPMENTAL DYNAMICS, Issue 4 2005Yasuko Onuma Abstract Nodal and Nodal-related proteins activate the Activin-like signal pathway and play a key role in the formation of mesoderm and endoderm in vertebrate development. Recent studies have shown additional activities of Nodal-related proteins apart from the canonical Activin-like signal pathway. Here we report a novel function of Nodal-related proteins using cleavage mutants of Xenopus nodal-related genes (cmXnr2 and cmXnr5), which are known to be dominant-negative inhibitors of nodal family signaling. cmXnr2 and cmXnr5 inhibited both BMP signaling and Wnt signaling without activating the Activin-like signal in animal cap assays. Pro region construct of Xnr2 and Xnr5 did not inhibit Xwnt8, and pro/mature region chimera mutant cmActivin - Xnr2 and cmActivin- Xnr5 also did not inhibit Xwnt8 activity. These results indicate that the pro domains of Xnr2 and Xnr5 are necessary, but not sufficient, for Wnt inhibition, by Xnr family proteins. In addition, Western blot analysis and immunohistochemistry analysis revealed that the unprocessed Xnr5 protein is stably produced and secreted as effectively as mature Xnr5 protein, and that the unprocessed Xnr5 protein diffused in the extracellular space. These results suggest that unprocessed Xnr2 and Xnr5 proteins may be involved in inhibiting both BMP and Wnt signaling and are able to be secreted to act on somewhat distant target cells, if these are highly produced. Developmental Dynamics 234:900,910, 2005. © 2005 Wiley-Liss, Inc. [source] A cervical cancer prevention programme in rural Mexico: addressing women and their contextJOURNAL OF COMMUNITY & APPLIED SOCIAL PSYCHOLOGY, Issue 5 2005Martha Givaudan Abstract This article reports on the development and administration of a programme in seven rural villages in the Mexican state of Oaxaca to address high rates of cervical cancer. The rationale and strategy are described on which the programme is based. The development and administration of the programme (to 1513 women) is presented, aimed at enabling women to take better care of themselves. Various additional activities that were added in the course of the programme in order to facilitate contextual factors are also described, including community campaigning, programmes with men and the training of health personnel. Effectiveness was evaluated in terms of both process and impact indices, showing high rates of attendance at programme sessions by enrolled women, an increase in knowledge and a substantial increase in the number of preventive diagnostic tests. The final section reflects on both the achievements, and the scope and the limitations of the programme. Copyright © 2005 John Wiley & Sons, Ltd. [source] The pharmacology of radiolabeled cationic antimicrobial peptidesJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2008Carlo P.J.M. Brouwer Abstract Cationic antimicrobial peptides are good candidates for new diagnostics and antimicrobial agents. They can rapidly kill a broad range of microbes and have additional activities that have impact on the quality and effectiveness of innate responses and inflammation. Furthermore, the challenge of bacterial resistance to conventional antibiotics and the unique mode of action of antimicrobial peptides have made such peptides promising candidates for the development of a new class of antibiotics. This review focuses on antimicrobial peptides as a topic for molecular imaging, infection detection, treatment monitoring and additionally, displaying microbicidal activities. A scintigraphic approach to studying the pharmacokinetics of antimicrobial peptides in laboratory animals has been developed. The peptides were labeled with technetium-99m and, after intravenous injection into laboratory animals, scintigraphy allowed real-time, whole body imaging and quantitative biodistribution studies of delivery of the peptides to the various body compartments. Antimicrobial peptides rapidly accumulated at sites of infection but not at sites of sterile inflammation, indicating that radiolabeled cationic antimicrobial peptides could be used for the detection of infected sites. As the number of viable micro-organisms determines the rate of accumulation of these peptides, radiolabeled antimicrobial peptides enabled to determine the efficacy of antibacterial therapy in animals to be monitored as well to quantify the delivery of antimicrobial peptides to the site of infection. The scintigraphic approach provides to be a reliable method for investigating the pharmacokinetics of small cationic antimicrobial peptides in animals and offers perspective for diagnosis of infections, monitoring antimicrobial therapy, and most important, alternative antimicrobial treatment infections with multi-drug resistant micro-organisms in humans. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci [source] Sensitivity of genera Porphyromonas and Prevotella to the bactericidal action of C-terminal domain of human CAP18 and its analoguesMOLECULAR ORAL MICROBIOLOGY, Issue 5 2003E. Isogai This paper reports the effect of the synthesized 27-amino acid sequence in the C-terminal domain of human CAP18 (hCAP18), a human cationic antibacterial protein or cathelicidin, on certain strains belonging to the genera Porophyromonas and Prevotella. The domain binds lipopolysaccharides (LPS) from Porophyromonas gingivalis and Porophyromonas circumdentaria as well as enterobacterial LPS. Two analogues of hCAP18, designated LL/CAP18 and FF/CAP18, were also tested to determine whether additional activity was obtained. The analogue peptides replaced with hydrophobic and cationic amino acid residues showed more potent bactericidal and LPS-binding activities than the original one. [source] ZD6474 induces growth arrest and apoptosis of GIST-T1 cells, which is enhanced by concomitant use of sunitinibCANCER SCIENCE, Issue 12 2006Yang Yang ZD6474 (Zactima, AstraZeneca, Macclesfield, UK) is an orally available, small-molecule inhibitor of vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinases, with additional activity versus rearranged during transfection (RET). This study explored the effect of ZD6474 in gastrointestinal stromal tumor-T1 (GIST-T1) cells that possess a gain of function mutation in exon 11 of the c-KIT gene. ZD6474 induced growth arrest and apoptosis of GIST-T1 cells in association with blockade of c-Kit and its downstream effectors, including Akt and extracellular signal-regulated kinase (ERK). ZD6474 treatment also blocked the mammalian target of rapamycin (mTOR), which lies downstream of Akt and ERK. Interestingly, when ZD6474 was combined with sunitinib (SU11248; Sutent, Pfizer, Kalamazoo, MI, USA), a class III and V receptor tyrosine kinase inhibitor, the ZD6474-mediated growth inhibition was potentiated in association with further down-regulation of the mTOR targets p-p70S6K and p-4E-BP-1. The combination of ZD6474 and sunitinib should be investigated further. (Cancer Sci 2006; 97: 1404,1409) [source] Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib ("Iressa")-sensitive and resistant xenograft modelsCANCER SCIENCE, Issue 12 2004Fumiko Taguchi ZD6474 is a novel, orally available inhibitor of vascular endothelial growth factor (VEGF) receptor-2 (KDR) tyrosine kinase, with additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. ZD6474 has been shown to inhibit angiogenesis and tumor growth in a range of tumor models. Gefitinib ("Iressa") is an selective EGFR tyrosine kinase inhibitor (TKI) that blocks signal transduction pathways. We examined the antitumor activity of ZD6474 in the gefitinib-sensitive lung adenocarcinoma cell line, PC-9, and a gefitinib-resistant variant (PC-9/ZD). PC-9/ZD cells showed cross-resistance to ZD6474 in an in vitro dye formation assay. In addition, ZD6474 showed dose-dependent inhibition of EGFR phosphorylation in PC-9 cells, but inhibition was only partial in PC-9/ZD cells. ZD6474-mediated inhibition of tyrosine residue phosphorylation (Tyr992 and Tyr1045) on EGFR was greater in PC-9 cells than in PC-9/ZD cells. These findings suggest that the inhibition of EGFR phosphorylation by ZD6474 can contribute a significant, direct growth-inhibitory effect in tumor cell lines dependent on EGFR signaling for growth and/or survival. The effect of ZD6474 (12.5,50 mg/kg/day p.o. for 21 days) on the growth of PC-9 and PC-9/ZD tumor xenografts in athymic mice was also investigated. The greatest effect was seen in gefitinib-sensitive PC-9 tumors, where ZD6474 treatment (>12.5 mg/kg/day) resulted in tumor regression. Dose-dependent growth inhibition, but not tumor regression, was seen in ZD6474-treated PC-9/ZD tumors. These studies demonstrate that the additional EGFR TKI activity may contribute significantly to the anti-tumor efficacy of ZD6474, in particular in those tumors that are dependent on continued EGFR-signaling for proliferation or survival. In addition, these results provide a preclinical rationale for further investigation of ZD6474 as a potential treatment option for both EGFR-TKI-sensitive and EGFR-TKI-resistant tumors. [source] |