Home About us Contact | |||
Dark Interval (dark + interval)
Selected AbstractsHypericin-mediated Photocytotoxic Effect on HT-29 Adenocarcinoma Cells Is Reduced by Light Fractionation with Longer Dark Pause Between Two Unequal Light DosesPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2005Veronika Sa ABSTRACT The present study demonstrates the in vitro effect of hypericin-mediated PDT with fractionated light delivery. Cells were photosensitized with unequal light fractions separated by dark intervals (1 or 6 h). We compared the changes in viability, cell number, survival, apoptosis and cell cycle on HT-29 cells irradiated with a single light dose (12 J/cm2) to the fractionated light delivery (1 + 11 J/cm2) 24 and 48 h after photodynamic treatment. We found that a fractionated light regime with a longer dark period resulted in a decrease of hypericin cytotoxicity. Both cell number and survival were higher after light sensitization with a 6-h dark interval. DNA fragmentation occurred after a single light-dose application, but in contrast no apoptotic DNA formation was detected with a 6-h dark pause. After fractionation the percentage of cells in the G1 phase of the cell cycle was increased, while the proportion of cells in the G2 phase decreased as compared to a single light-dose application, i.e. both percentage of cells in the G1 and G2 phase of the cell cycle were near control levels. We presume that the longer dark interval after the irradiation of cells by first light dose makes them resistant to the effect of the second illumination. These findings confirm that the light application scheme together with other photodynamic protocol components is crucial for the photocytotoxicity of hypericin. [source] Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerancePHYSIOLOGIA PLANTARUM, Issue 2 2009Abdallah Oukarroum Drought stress has multiple effects on the photosynthetic system. Here, we show that a decrease of the relative contribution of the I-P phase, ,VIP = ,VI = (FM,FI)/(FM, Fo), to the fluorescence transient OJIP is observed in 10 drought-stressed barley and 9 chickpea varieties. The extent of the I-P loss in the barley varieties depended on their drought tolerance. The relative loss of the I-P phase seems to be related to a loss of photosystem (PS) I reaction centers as determined by 820-nm transmission measurements. In the second part of this study, the interaction of drought and heat stress in two barley varieties (the drought tolerant variety A¨t Baha and the drought sensitive variety Lannaceur) was studied using a new approach. Heat stress was induced by exposing the plant leaves to temperatures of 25,45°C and the inactivation of the O2 -evolving complex (OEC) was followed measuring chlorophyll a (Chl a) fluorescence using a protocol consisting of two 5-ms pulses spaced 2.3 ms apart. In active reaction centers, the dark interval is long enough to allow the OEC to recover from the first pulse; whereas in heat-inactivated reaction centers it is not. In the latter category of reaction centers, no further fluorescence rise is induced by the second pulse. Lannaceur, under well-watered conditions, was more heat tolerant than Aït Baha. However, this difference was lost following drought stress. Drought stress considerably increased the thermostability of PS II of both varieties. [source] Hypericin-mediated Photocytotoxic Effect on HT-29 Adenocarcinoma Cells Is Reduced by Light Fractionation with Longer Dark Pause Between Two Unequal Light DosesPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2005Veronika Sa ABSTRACT The present study demonstrates the in vitro effect of hypericin-mediated PDT with fractionated light delivery. Cells were photosensitized with unequal light fractions separated by dark intervals (1 or 6 h). We compared the changes in viability, cell number, survival, apoptosis and cell cycle on HT-29 cells irradiated with a single light dose (12 J/cm2) to the fractionated light delivery (1 + 11 J/cm2) 24 and 48 h after photodynamic treatment. We found that a fractionated light regime with a longer dark period resulted in a decrease of hypericin cytotoxicity. Both cell number and survival were higher after light sensitization with a 6-h dark interval. DNA fragmentation occurred after a single light-dose application, but in contrast no apoptotic DNA formation was detected with a 6-h dark pause. After fractionation the percentage of cells in the G1 phase of the cell cycle was increased, while the proportion of cells in the G2 phase decreased as compared to a single light-dose application, i.e. both percentage of cells in the G1 and G2 phase of the cell cycle were near control levels. We presume that the longer dark interval after the irradiation of cells by first light dose makes them resistant to the effect of the second illumination. These findings confirm that the light application scheme together with other photodynamic protocol components is crucial for the photocytotoxicity of hypericin. [source] Oxygen evolution and respiration of the cyanobacterium Synechocystis sp.PHYSIOLOGIA PLANTARUM, Issue 3 2005PCC 6803 under two different light regimes applying light/dark intervals in the time scale of minutes The photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803 exposed to intermittent light was studied by measuring oxygen evolution, respiration and the fluorescence parameters for maximum efficiency of excitation energy capture by photosystem II (PSII) reaction centres (Fv/Fm), PSII quantum yield (,F/Fm1) and non-photochemical quenching (NPQ). Cultures were pre-acclimated to constant light conditions. Block and sinusoidal light regimes were tested using four photon-flux densities (PFDs) applied in light/dark intervals of 1:1, 5:5 and 10:10 min. Light use was higher under the sinusoidal light regime compared with the block regime. The accumulated gross photosynthesis of the cyanobacterium was lower under intermittent light conditions compared with predictions from the photosynthesis-irradiance curve (PI curve). The respiration rates were similar for all light/dark intervals tested. However, the respiration slightly increased with increasing oxygen production for both block and sinusoidal light regime. NPQ, ,F/Fm, and Fv/Fm depended on the PFD rather than on the duration of the light/dark intervals tested, and there was no detected influence of the two applied light regimes. [source] |