Danish Lakes (danish + lake)

Distribution by Scientific Domains


Selected Abstracts


Marking pike fry otoliths with alizarin complexone and strontium: an evaluation of methods

JOURNAL OF FISH BIOLOGY, Issue 3 2001
C. Skov
Laboratory experiments demonstrated that both alizarin complexone and strontium are useful in mass marking of pike Esox lucius fry otoliths. Visual detection of alizarin complexone marks was considered more reliable than the quantitative analysis of strontium for differentiating marked and unmarked individuals after release in a Danish lake. [source]


Submerged macrophytes as indicators of the ecological quality of lakes

FRESHWATER BIOLOGY, Issue 4 2010
MARTIN SØNDERGAARD
Summary 1. We analysed submerged macrophyte communities from 300 Danish lakes to determine the efficacy of different species, maximum colonisation depth (Cmax) of plants as well as coverage and plant volume inhabited (PVI) as indicators of eutrophication. 2. Most species occurred at a wide range of phosphorus and chlorophyll a (Chla) concentrations, but some species of isoetids (Lobelia, Isoëtes) and Potamogeton (Potamogeton gramineus, Potamogeton alpinus and Potamogeton filiformis) were mainly found at low nutrient concentrations and hence may be considered as indicators of nutrient poor conditions. However, species typically found in nutrient-rich conditions, such as Elodea canadensis and Potamogeton pectinatus, were also found at total phosphorus (TP) <0.02 mg P L,1 and Chla <5 ,g L,1 and therefore cannot be considered as reliable indicators of eutrophic conditions. 3. Submerged macrophyte coverage, PVI and the Cmax were negatively correlated with TP and Chla. However, variability among lakes was high and no clear thresholds were observed. At TP between 0.03 and 0.07 mg P L,1 plant coverage in shallow lakes ranged from nearly 0 to 100%, whilst at concentrations between 0.10 and 0.20 mg P L,1 only 29% of the lakes had coverage >10%. Cmax was found to be a useful indicator only in deep lakes with unvegetated areas in the deeper part, whereas the use of coverage was restricted to shallow lakes or shallow areas of deep lakes. 4. Overall, submerged macrophytes responded clearly to eutrophication, but the metrics investigated here showed no well-defined thresholds. We developed a simple index based on species richness, presence of indicator species, coverage and Cmax, which might be used to track major changes in macrophyte communities and for lake classification. [source]


Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes

FRESHWATER BIOLOGY, Issue 10 2005
MARTIN SØNDERGAARD
Summary 1.,Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2.,Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3.,Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non-significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic-coupling and the lack of stratification in shallow lakes. 4.,Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5.,These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis. [source]


Lake responses to reduced nutrient loading , an analysis of contemporary long-term data from 35 case studies

FRESHWATER BIOLOGY, Issue 10 2005
ERIK JEPPESEN
Summary 1. This synthesis examines 35 long-term (5,35 years, mean: 16 years) lake re-oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 ,g L,1 before loading reduction), subtropical to temperate (latitude: 28,65°), and lowland to upland (altitude: 0,481 m). Shallow north-temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in-lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10,15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in-lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100,150 ,g L,1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re-oligotrophication. [source]


Water Framework Directive: ecological classification of Danish lakes

JOURNAL OF APPLIED ECOLOGY, Issue 4 2005
MARTIN SØNDERGAARD
Summary 1The European Water Framework Directive (WFD) requires that all European waterbodies are assigned to one of five ecological classes, based primarily on biological indicators, and that minimum good ecological quality is obtained by 2015. However, the directive provides only general guidance regarding indicator definitions and determination of boundaries between classes. 2We used chemical and biological data from 709 Danish lakes to investigate whether and how lake types respond differently to eutrophication. In the absence of well-defined reference conditions, lakes were grouped according to alkalinity and water depth, and the responses to eutrophication were ordered along a total phosphorus (TP) gradient to test the applicability of pre-defined boundaries. 3As a preliminary classification we suggest a TP-based classification into high, good, moderate, bad and poor ecological quality using 0,25, 25,50, 50,100, 100,200 and > 200 µg P L,1 boundaries for shallow lakes, and 0,12·5, 12·5,25, 25,50, 50,100 and > 100 µg P L,1 boundaries for deep lakes. Within each TP category, median values are used to define preliminary boundaries for the biological indicators. 4Most indicators responded strongly to increasing TP, but there were only minor differences between low and high alkalinity lakes and modest variations between deep and shallow lakes. The variability of indicators within a given TP range was, however, high, and for most indicators there was a considerable overlap between adjacent TP categories. Cyanophyte biomass, submerged macrophyte coverage, fish numbers and chlorophyll a were among the ,best' indicators, but their ability to separate different TP classes varied with TP. 5When using multiple indicators the risk that one or more indicators will indicate different ecological classes is high because of a high variability of all indicators within a specific TP class, and the ,one out , all out' principle in relation to indicators does not seem feasible. Alternatively a certain compliance level or a ,mean value' of the indicators can be used to define ecological classes. A precise ecological quality ratio (EQR) using values between 0 and 1 can be calculated based on the extent to which the total number of indicators meets the boundary conditions, as demonstrated from three Danish lakes. 6Synthesis and applications. The analysis of Danish lakes has identified a number of useful indicators for lake quality and has suggested a method for calculating an ecological quality ratio. However, it also demonstrates that the implementation of the Water Framework Directive faces several challenges: gradual rather than stepwise changes for all indicators, large variability of indicators within lake classes, and problems using the one out , all out principle for lake classification. [source]