Home About us Contact | |||
Daily Ethanol Intake (daily + ethanol_intake)
Selected AbstractsGalanin Knockout Mice Show Disturbances in Ethanol Consumption and Expression of Hypothalamic Peptides That Stimulate Ethanol IntakeALCOHOLISM, Issue 1 2010Olga Karatayev Background:, There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice. Methods:, Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake. Results:, In the GALKO mice compared to WT, the results revealed: (i) a 35 to 45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as nonlittermate WT mice; (ii) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; (iii) no difference in consumption of sucrose or quinine solutions in preference tests; (iv) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and (v) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males. Conclusions:, These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females and their increased expression attenuating these effects in males. [source] Nitric Oxide Synthesis Inhibition Attenuates Conditioned Reinstatement of Ethanol-Seeking, but Not the Primary Reinforcing Effects of EthanolALCOHOLISM, Issue 8 2004Xiu Liu Background: Nitric oxide (NO) signaling has been implicated in regulating aspects of the reinforcing and addictive actions of cocaine. These experiments were designed to examine whether NO-dependent neurotransmission also participates in mediating the addictive actions of another drug of abuse, ethanol, with emphasis on both the primary reinforcing effects of ethanol and the incentive motivational effects of ethanol-related contextual stimuli. Methods: Male Wistar rats were operantly trained to orally self-administer 10% (w/v) ethanol in daily 30-min sessions and to associate distinct discriminative stimuli with the availability of ethanol (S+) versus nonreward (S,). Rats were treated with the NO synthase inhibitor NG -nitro-l-arginine methyl ester (l-NAME; 0, 10, or 40 mg/kg intraperitoneally) 30 min before self-administration tests that were conducted after establishment of stable levels of daily ethanol intake and conditioned reinstatement tests that were performed after extinction of ethanol-maintained operant responding. Results: l-NAME did not alter the primary reinforcing effects of ethanol in self-administration tests. In contrast, l-NAME dose-dependently attenuated the recovery of extinguished responding induced by the ethanol S+ in the absence of ethanol availability during reinstatement tests. Conclusions: These results suggest that the NO system does not play a role in behavior reinforced directly by ethanol. However, the results implicate NO-dependent neurotransmission in alcohol-seeking responses elicited by drug-related contextual stimuli. [source] Induction and Maintenance of Ethanol Self-Administration in Cynomolgus Monkeys (Macaca fascicularis): Long-Term Characterization of Sex and Individual DifferencesALCOHOLISM, Issue 8 2001J. A. Vivian Background: Investigations of oral ethanol self-administration in nonhuman primates have revealed important parallels with human alcohol use and abuse, yet many fundamental questions concerning the individual risk to, and the biological basis of, excessive ethanol consumption remain unanswered. Moreover, many conditions of access to ethanol in nonhuman primate research are largely unexplored. This set of experiments extends within- and across-session exposure to ethanol to more fully characterize individual differences in oral ethanol self-administration. Methods: Eight male and eight female adult cynomolgus monkeys (Macaca fascicularis) were exposed to daily oral ethanol self-administration sessions for approximately 9 months. During the first 3 months, a fixed-time (FT) schedule of food delivery was used to induce the consumption of an allotted dose of ethanol in 16-hr sessions. Subsequently, the FT schedule was suspended, and ethanol was available ad libitum for 6 months in 16- or 22-hr sessions. Results: Cynomolgus monkeys varied greatly in their propensity to self-administer ethanol, with sex and individual differences apparent within 10 days of ethanol exposure. Over the last 3 months of ethanol access, individual average ethanol intakes ranged from 0.6 to 4.0 g/kg/day, resulting in blood ethanol concentrations from 5 to 235 mg/dl. Males drank approximately 1.5-fold more than females. In addition, heavy-, moderate-, and light-drinking phenotypes were identified by using daily ethanol intake and the percentage of daily calories obtained from ethanol as criteria. Conclusions: Cynomolgus monkeys displayed a wide intersubject range of oral ethanol self-administration with a procedure that used a uniform and prolonged induction that restricted early exposure to ethanol and subsequently allowed unlimited access to ethanol. There were sex and stable individual differences in the propensity of monkeys to consume ethanol, indicating that this species will be important in characterizing risk factors associated with heavy-drinking phenotypes. [source] Semiquantitative study of current coffee, caffeine, and ethanol intake in essential tremor cases and controlsMOVEMENT DISORDERS, Issue 5 2004Elan D. Louis MD Abstract There are several reasons to study caffeine, coffee, and ethanol intake in essential tremor (ET) patients. ET patients also might modify their use of these beverages because of their effects on tremor. Intake of caffeine, coffee, and ethanol has not been quantified in a group of ET patients. Our objective is to use a semiquantitative food frequency questionnaire to compare current daily intake of coffee, caffeine, and ethanol in ET patients and controls. A total of 130 ET cases were patients at the Neurological Institute of New York, and 175 controls were ascertained by random digit dialing. Caffeine (in milligrams) and ethanol (in grams) intake were calculated from a semiquantitative food-frequency questionnaire. Mean daily caffeine intake in patients was 138.4 versus 246.6 mg in controls; medians were 101.1 versus 175.5 mg (P < 0.001). Mean daily ethanol intake in patients was 8.2 versus 6.2 gm in controls; medians were 2.4 versus 1.9 gm (P = 0.89). Cases drank less coffee than controls, but drank similar amounts of tea, soft drinks, fruit juices, and milk. Daily caffeine intake was not correlated with tremor severity or duration. ET patients consumed less caffeine than did controls, which is likely to be a dietary modification in response to tremor. The observation that caffeine consumption was not correlated with tremor severity raises the additional possibility that lower caffeine consumption in ET patients may not exclusively be a response to tremor. A prospective study is needed to explore whether decreased caffeine consumption is a risk factor for ET. © 2004 Movement Disorder Society [source] Using drinking in the dark to model prenatal binge-like exposure to ethanol in C57BL/6J miceDEVELOPMENTAL PSYCHOBIOLOGY, Issue 6 2008Stephen L. Boehm II Abstract Animal models of prenatal ethanol exposure are necessary to more fully understand the effects of ethanol on the developing embryo/fetus. However, most models employ procedures that may produce additional maternal stress beyond that produced by ethanol alone. We employed a daily limited-access ethanol intake model called Drinking in the Dark (DID) to assess the effects of voluntary maternal binge-like ethanol intake on the developing mouse. Evidence suggests that binge exposure may be particularly harmful to the embryo/fetus, perhaps due to the relatively higher blood ethanol concentrations achieved. Pregnant females had mean daily ethanol intakes ranging from 4.2 to 6.4 g/kg ethanol over gestation, producing blood ethanol concentrations ranging from 115 to 182 mg/dL. This level of ethanol intake produced behavioral alterations among adolescent offspring that disappeared by adulthood, including altered sensitivity to ethanol's hypnotic actions. The DID model may provide a useful tool for studying the effects of prenatal ethanol exposure in mice. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 566,578, 2008. [source] |