Dynamic Modeling (dynamic + modeling)

Distribution by Scientific Domains


Selected Abstracts


DYNAMIC MODELING OF RETORT PROCESSING USING NEURAL NETWORKS

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2002
C. R. CHEN
ABSTRACT Two neural network approaches , a moving-window and hybrid neural network , which combine neural network with polynomial regression models, were used for modeling F(t) and Qv(t) dynamic functions under constant retort temperature processing. The dynamic functions involved six variables: retort temperature (116,132C), thermal diffusivity (1.5,2.3 × 10,7m2/s), can radius (40,61 mm), can height (40,61 mm), and quality kinetic parameters z (15,39C) and D (150,250 min). A computer simulation designed for process calculations of food thermal processing systems was used to provide the fundamental data for training and generalization of ANN models. Training data and testing data were constructed by both second order central composite design and orthogonal array, respectively. The optimal configurations of ANN models were obtained by varying the number of hidden layers, number of neurons in hidden layer and learning runs, and a combination of learning rules and transfer function. Results demonstrated that both neural network models well described the F(t) and Qv(t) dynamic functions, but moving-window network had better modeling performance than the hybrid ANN models. By comparison of the configuration parameters, moving-window ANN models required more neurons in the hidden layer and more learning runs for training than the hybrid ANN models. [source]


Dynamic Modeling of Industrial Ecosystems

JOURNAL OF INDUSTRIAL ECOLOGY, Issue 6 2009
Matthias Ruth
First page of article [source]


Dynamic Modeling and Simulation of Steam Cracking Furnaces

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2007
M. Ghashghaee
Abstract The transient modeling of thermal cracking furnaces is developed. This representation is capable of describing and predicting the unsteady-state behavior of cracking furnaces during start-up. To accurately predict the heat transfer to the reactor tube, the fireside conditions are coupled with the process side. The mutual interaction of these two sections is found to be very stiff in terms of convergence of the computations. The two-dimensional transient zone model is developed for the radiative heat exchange calculation. A simplified model for the convection section is also used to predict the crossover temperature at each time increment. The main simulation outputs are the flue gas properties as well as the distributions of heat flux, refractory wall and coil skin temperatures versus time. The dynamic simulation is implemented for a conventional procedure used in the start-up run of the olefin furnaces. [source]


Dynamic modeling, stability, and energy efficiency of a quadrupedal walking machine

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 11 2001
Ben Sheng Lin
In the past, the dynamics of walking machines was studied based on very simple or simplified leg structures. A more complete dynamic model is essential for the further development of a practical walking machine. In this paper, the dynamic model of a realistic quadrupedal walking machine is derived for simulation and real-time control purposes. The walker has four cylindrical pantograph legs, and the whole system consists of twenty-nine links. The walking gait is wave gait with at least three feet on the ground at any time. Significant efforts have been made to improve the computational efficiency of the inverse dynamics, and the required CPU time is less than 10 ms on an IBM 3090. The derived dynamic model is then applied to study two practical issues of walking: dynamic stability and mechanical efficiency of different legs and gaits. Simulation results show clear advantages of one leg type over another, and of some walking strategies in terms of adjusting velocities, strokes, and duty factors for greater efficiency. © 2001 John Wiley & Sons, Inc. [source]


Strategies for the numerical integration of DAE systems in multibody dynamics

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 2 2004
E. Pennestrì
Abstract The number of multibody dynamics courses offered in the university is increasing. Often the instructor has the necessity to go through the steps of an algorithm by working out a simple example. This gives the student a better understand of the basic theory. This paper provides a tutorial on the numerical integration of differential-algebraic equations (DAE) arising from the dynamic modeling of multibody mechanical systems. In particular, some algorithms based on the orthogonalization of the Jacobian matrix are herein discussed. All the computational steps involved are explained in detail and by working out a simple example. It is also reported a brief description and an application of the multibody code NumDyn3D which uses the Singular Value Decomposition (SVD) approach. © 2004 Wiley Periodicals, Inc. Comput Appl Eng Educ 12: 106,116, 2004; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20005 [source]


Nonparametric Identification of a Building Structure from Experimental Data Using Wavelet Neural Network

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 5 2003
Shih-Lin Hung
By combining wavelet decomposition and artificial neural networks (ANN), wavelet neural networks (WNN) are used for solving chaotic signal processing. The basic operations and training method of wavelet neural networks are briefly introduced, since these networks can approximate universal functions. The feasibility of structural behavior modeling and the possibility of structural health monitoring using wavelet neural networks are investigated. The practical application of a wavelet neural network to the structural dynamic modeling of a building frame in shaking tests is considered in an example. Structural acceleration responses under various levels of the strength of the Kobe earthquake were used to train and then test the WNNs. The results reveal that the WNNs not only identify the structural dynamic model, but also can be applied to monitor the health condition of a building structure under strong external excitation. [source]


Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2008
Xuan Xiao
Abstract Using the pseudo amino acid (PseAA) composition to represent the sample of a protein can incorporate a considerable amount of sequence pattern information so as to improve the prediction quality for its structural or functional classification. However, how to optimally formulate the PseAA composition is an important problem yet to be solved. In this article the grey modeling approach is introduced that is particularly efficient in coping with complicated systems such as the one consisting of many proteins with different sequence orders and lengths. On the basis of the grey model, four coefficients derived from each of the protein sequences concerned are adopted for its PseAA components. The PseAA composition thus formulated is called the "grey-PseAA" composition that can catch the essence of a protein sequence and better reflect its overall pattern. In our study we have demonstrated that introduction of the grey-PseAA composition can remarkably enhance the success rates in predicting the protein structural class. It is anticipated that the concept of grey-PseAA composition can be also used to predict many other protein attributes, such as subcellular localization, membrane protein type, enzyme functional class, GPCR type, protease type, among many others. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008. [source]


Optimal auditing in the banking industry

OPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 2 2008
T. Bosch
Abstract As a result of the new regulatory prescripts for banks, known as the Basel II Capital Accord, there has been a heightened interest in the auditing process. Our paper considers this issue with a particular emphasis on the auditing of reserves, assets and capital in both a random and non-random framework. The analysis relies on the stochastic dynamic modeling of banking items such as loans, reserves, Treasuries, outstanding debts, bank capital and government subsidies. In this regard, one of the main novelties of our contribution is the establishment of optimal bank reserves and a rate of depository consumption that is of importance during an (random) audit of the reserve requirements. Here the specific choice of a power utility function is made in order to obtain an analytic solution in a Lévy process setting. Furthermore, we provide explicit formulas for the shareholder default and regulator closure rules, for the case of a Poisson-distributed random audit. A property of these rules is that they define the standard for minimum capital adequacy in an implicit way. In addition, we solve an optimal auditing time problem for the Basel II capital adequacy requirement by making use of Lévy process-based models. This result provides information about the optimal timing of an internal audit when the ambient value of the capital adequacy ratio is taken into account and the bank is able to choose the time at which the audit takes place. Finally, we discuss some of the economic issues arising from the analysis of the stochastic dynamic models of banking items and the optimization procedure related to the auditing process. Copyright © 2007 John Wiley & Sons, Ltd. [source]


System Dynamics as a Structural Theory in Operations Management

PRODUCTION AND OPERATIONS MANAGEMENT, Issue 3 2008
Andreas Größler
The purpose of the paper is to demonstrate the usefulness of (1) system dynamics as a structural theory for operations management and (2) system dynamics models as content theories in operations management. The key findings are that, although feedback loops, accumulation processes, and delays exist and are widespread in operations management, often these phenomena are ignored completely or not considered appropriately. Hence, it is reasoned why system dynamics is well suited as an approach for many operations management studies, and it is shown how system dynamics theory can be used to explain, analyze, and understand such phenomena in operations management. The discussion is based on a literature review and on conceptual considerations, with examples of operations management studies based on system dynamics. Implications of using this theory include the necessary re-framing of some operations management issues and the extension of empirical studies by dynamic modeling and simulation. The value of the paper lies in the conceptualization of the link between system dynamics and operations management, which is discussed on the level of theory. [source]