Dynamic Coupling (dynamic + coupling)

Distribution by Scientific Domains


Selected Abstracts


A Chemical Device That Exhibits Dual Mode Motions: Dynamic Coupling of Amide Coordination Isomerism and Metal-Centered Helicity Inversion in a Chiral Cobalt(II) Complex

CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2008
Hiroyuki Miyake Prof.
Chemical hand-waving: Dynamic molecular motion between two distinct structures (contraction/extension) is displayed by an octahedral cobalt complex (shown schematically), in which the distance between two coordinated methoxy oxygen atoms changed from 0.3 to 1.3,nm. Furthermore, the helical direction of the extended complex was inverted in response to NO3, ions, and stretching and inverting motions occurred reversibly and repeatedly. [source]


Size distributions of suspended particles in open channel flow over bed materials

ENVIRONMETRICS, Issue 2 2005
B. S. Mazumder
Controlled experiments have shown that the grain-size distribution of suspended sediments is related to bed material, flow velocity and height of suspension above the sand bed in an open channel flow. A theoretical model has been developed for computation of suspended grain-size distribution on the basis of continuity equations of sediment and water, using the computed bed-layer concentration as a reference. The proposed model includes the effect of suspension concentration into the mean velocity, turbulent and viscous shear stresses owing to the dynamic coupling between the flow and sediments in suspension. The effect of hindered settling due to the increased concentration in suspension is also taken into account. The model is considered to be a more general one than the existing models, and the results of the present model compare well with the experimental data. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Analytical solutions for dynamic pressures of coupling fluid,porous medium,solid due to SV wave incidence

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2009
Jin-Ting Wang
Abstract This paper presents the results of theoretical investigation on the dynamic coupling of an ideal fluid-porous medium-elastic half-space system subjected to SV waves to study the effect of sediment on the seismic response of dams for reservoirs that are deposited with a significant amount of sediment after a long period of operation. The effects of the porous medium and the incident wave angle on dynamic pressures in the overlying ideal fluid are analyzed, and the reflection and transmission coefficients of the wave at the material interfaces are derived using an analytical solution in terms of displacement potentials. The numerical test of modeling shows that the dynamic pressures significantly depend on the properties of porous medium. The fully saturated porous medium reduces the response peaks slightly, while the partially saturated porous medium causes a considerable increase in the resonance peaks. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Kinematic and dynamic analysis of open-loop mechanical systems using non-linear recursive formulation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 12 2006
Yunn-Lin Hwang
Abstract In this paper, a non-linear recursive formulation is developed for kinematic and dynamic analysis of open-loop mechanical systems. The non-linear equations of motion are developed for deformable links that undergo large translational and rotational displacements. These equations are formulated in terms of a set of time invariant scalars and matrices that depend on the spatial co-ordinates as well as the assumed displacement field, and these time invariant quantities represent the dynamic coupling between the rigid-body modes and elastic deformations. A new recursive formulation is presented for solving equations of motion for open-loop chains consisting of interconnected rigid and deformable open-loop mechanical systems. This formulation is expressed by the recursive relationships and the generalized non-linear equations for deformable mechanical systems to obtain a large system of loosely coupled equations of motion. The main processor program consists of three main modules: constraint module, mass module and force module. The constraint module is used to numerically evaluate the relationship between the absolute and joint accelerations. The mass module is used to numerically evaluate the system mass matrix as well as the non-linear Coriolis and centrifugal forces associated with the absolute, joint and elastic co-ordinates. Simultaneously, the force module is used to numerically evaluate the generalized external and elastic forces associated with the absolute, joint and elastic co-ordinates. Computational efficiency is achieved by taking advantage of the structure of the resulting system of loosely coupled equations. The solution techniques used in this investigation yield a much smaller operations count and can more efficiently implement in any computer. The algorithms and solutions presented in this paper are illustrated by using an industrial robotic manipulator system. The numerical results using this formulation are also presented and discussed in this paper. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Out-of-Equilibrium Self-Assembly of Binary Mixtures of Nanoparticles

ADVANCED MATERIALS, Issue 5 2006
G. Sztrum
A coarse-grained lattice-gas model is developed to study the drying-mediated self-assembly of binary mixtures of nanoparticles (NPs). Three model systems are considered, corresponding to equilibrium phase separation between two NPs (A and B), to an amorphous state, and to an ordered, checkerboard-like superstructure (see Figure; red: NPA; green: NPB; blue: solvent). The mechanism for self-ordering depends on the nature of the equilibrium superstructure and on the dynamic coupling to the evaporating solvent. [source]


Multiple ligand simultaneous docking: Orchestrated dancing of ligands in binding sites of protein

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2010
Huameng Li
Abstract Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein,ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 [source]


Dynamics and Coupling Actuation of Elastic Underactuated Manipulators

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 3 2003
Tie Shi Zhao
This paper investigates the constraint and coupling characteristics of underactuated manipulators by proposing an elastic model of the manipulator and examining the second order constraint equation. A dynamic model and a coupling constraint equation are developed from a Jacobian matrix and the Newton-Euler formulation. The inertia matrix and the Christoffel tensor are analyzed and decomposed into the part concerning actuated joints and the part concerning passive joints. This decomposition is further extended to the dynamic coupling equation and generates an actuation coupling matrix and a dynamic coupling tensor. Two new dynamic coupling indices are hence identified. One is related to an actuation input and the other is related to centrifugal and Coriolis forces. The former reveals the dynamic coupling between the input and the acceleration of passive joints and gives the actuation effect on the passive joints. The latter reveals the dynamic coupling between the centrifugal and Coriolis forces and the acceleration of passive joints and provides the centrifugal and Coriolis effect on the acceleration of passive joints. The study reveals the coupling characteristics of an underactuated manipulator. This is then demonstrated in a three-link manipulator and extended to a serial manipulator with passive prismatic joint. © 2003 Wiley Periodicals, Inc. [source]


Mixtures of correlated bosons and fermions: Dynamical mean-field theory for normal and condensed phases

ANNALEN DER PHYSIK, Issue 9 2009
K. Byczuk
Abstract We derive a dynamical mean-field theory for mixtures of interacting bosons and fermions on a lattice (BF-DMFT). The BF-DMFT is a comprehensive, thermodynamically consistent framework for the theoretical investigation of Bose-Fermi mixtures and is applicable for arbitrary values of the coupling parameters and temperatures. It becomes exact in the limit of high spatial dimensions d or coordination number Z of the lattice. In particular, the BF-DMFT treats normal and condensed bosons on equal footing and thus includes the effects caused by their dynamic coupling. Using the BF-DMFT we investigate two different interaction models of correlated lattice bosons and fermions, one where all particles are spinless (model I) and one where fermions carry a spin one-half (model II). In model I the local, repulsive interaction between bosons and fermions can give rise to an attractive effective interaction between the bosons. In model II it can also lead to an attraction between the fermions. [source]


Modelling interactions between fold,thrust belt deformation, foreland flexure and surface mass transport

BASIN RESEARCH, Issue 2 2006
Guy D. H. Simpson
ABSTRACT Interactions between fold and thrust belt deformation, foreland flexure and surface mass transport are investigated using a newly developed mathematical model incorporating fully dynamic coupling between mechanics and surface processes. The mechanical model is two dimensional (plane strain) and includes an elasto-visco-plastic rheology. The evolving model is flexurally compensated using an elastic beam formulation. Erosion and deposition at the surface are treated in a simple manner using a linear diffusion equation. The model is solved with the finite element method using a Lagrangian scheme with marker particles. Because the model is particle based, it enables straightforward tracking of stratigraphy and exhumation paths and it can sustain very large strain. It is thus ideally suited to study deformation, erosion and sedimentation in fold,thrust belts and foreland basins. The model is used to investigate how fold,thrust deformation and foreland basin development is influenced by the non-dimensional parameter , which can be interpreted as the ratio of the deformation time scale to the time scale for surface processes. Large values of imply that the rate of surface mass transport is significantly greater than the rate of deformation. When , the rates of surface processes are so slow that one observes a classic propagating fold,thrust belt with well-developed wedge top basins and a largely underfilled foreland flexural depression. Increasing causes (1) deposition to shift progressively from the wedge top into the foredeep, which deepens and may eventually become filled, (2) widespread exhumation of the fold,thrust belt, (3) reduced rates of frontal thrust propagation and possible attainment of a steady-state orogen width and (4) change in the style and dynamics of deformation. Together, these effects indicate that erosion and sedimentation, rather than passively responding to tectonics, play an active and dynamic role in the development of fold,thrust belts and foreland basins. Results demonstrate that regional differences in the relative rates of surface processes (e.g. because of different climatic settings) may lead to fold,thrust belts and foreland basins with markedly different characteristics. Results also imply that variations in the efficiency of surface processes through time (e.g., because of climate change or the emergence of orogens above sea level) may cause major temporal changes in orogen and basin dynamics. [source]