Home About us Contact | |||
Dynamic Balance (dynamic + balance)
Selected AbstractsDynamic Balance and Stepping Versus Tai Chi Training to Improve Balance and Stepping in At-Risk Older AdultsJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 12 2006Joseph O. Nnodim MD OBJECTIVES: To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. DESIGN: Prospective intervention trial. SETTING: Local senior centers and congregate housing facilities. PARTICIPANTS: Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. INTERVENTION: Participants were allocated to TC (n= 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n=106, mean age 78). MEASUREMENTS: At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). RESULTS: Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. CONCLUSION: Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs. [source] Optimization-based dynamic human walking prediction: One step formulationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 6 2009Yujiang Xiang Abstract A new methodology is introduced in this work to simulate normal walking using a spatial digital human model. The proposed methodology is based on an optimization formulation that minimizes the dynamic effort of people during walking while considering associated physical and kinematical constraints. Normal walking is formulated as a symmetric and cyclic motion. Recursive Lagrangian dynamics with analytical gradients for all the constraints and objective function are incorporated in the optimization process. Dynamic balance of the model is enforced by direct use of the equations of motion. In addition, the ground reaction forces are calculated using a new algorithm that enforces overall equilibrium of the human skeletal model. External loads on the human body, such as backpacks, are also included in the formulation. Simulation results with the present methodology show good correlation with the experimental data obtained from human subjects and the existing literature. Copyright © 2009 John Wiley & Sons, Ltd. [source] Gabapentin can improve postural stability and quality of life in primary orthostatic tremorMOVEMENT DISORDERS, Issue 7 2005Julian P. Rodrigues MD Abstract Primary orthostatic tremor (OT) is characterized by leg tremor and instability on standing. High frequency (13,18 Hz) tremor bursting is present in leg muscles during stance, and posturography has shown greater than normal sway. We report on an open-label add-on study of gabapentin in 6 patients with OT. Six patients were studied with surface electromyography, force platform posturography, and a modified Parkinson's disease questionnaire (PDQ-39) quality of life (QOL) scale before and during treatment with gabapentin 300 mg t.d.s. If on other medications for OT, these were continued unchanged. Of the 6 patients, 4 reported a subjective benefit of 50 to 75% with gabapentin, 3 of whom showed reduced tremor amplitude and postural sway of up to 70%. Dynamic balance improved in all 3 patients who completed the protocol. QOL data from 5 patients showed improvement in all cases. No adverse effects were noted. Gabapentin may improve tremor, stability, and QOL in patients with OT, and symptomatic response correlated with a reduction in tremor amplitude and postural sway. The findings confirm previous reports of symptomatic benefit with gabapentin and provide justification for larger controlled clinical trials. Further work is required to establish the optimal dosage and to validate the methods used to quantify the response to treatment. © 2005 Movement Disorder Society [source] Development of motor speed and associated movements from 5 to 18 yearsDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 3 2010THEO GASSER PHD Aim, To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Method, Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). Results, A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. Interpretation, Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information. [source] Combination of Clk family kinase and SRp75 modulates alternative splicing of Adenovirus E1AGENES TO CELLS, Issue 3 2008Jun-ichiro Yomoda SR proteins are non-snRNP splicing factors harbouring a domain rich in Arg-Ser repeats, which are extensively phosphorylated by several kinases. We performed a comparative study of different SR kinases, including SRPK, Clk, PRP4 and DYRK, and found that only Clks efficiently altered 5, splice site selection of Adenovirus E1A. The phosphorylation state of SR proteins was examined using a phospho-SR specific antibody mAb1H4 and a 75 kDa protein was most evidently hyperphosphorylated by Clks. Administration of TG003, a specific inhibitor for the Clk family members, specifically and rapidly induced dephosphorylation of 75 kDa SR protein. Imaging with mRFP-SRp75 in living cells revealed that its nuclear distribution was rapidly altered upon inhibition of the Clk activity by TG003. Co-transfection experiments demonstrated that HA-tagged SRp75 was hyperphosphorylated by Clk family members, but not by other SR kinases. These results indicate that Clks specifically hyperphosphorylate SRp75. Furthermore, SRp75 over-expression promoted the selection of 12S 5, splice site in E1A pre-mRNA, which is stimulated by co-expression of Clks. These results suggest that the specific combination of SR protein and SR kinase plays a distinct role in alternative splicing through dynamic balance of phosphorylation. [source] A framework for developing intelligent real-time scheduling systemsHUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, Issue 4 2006Ronald F. McPherson The authors describe the adaptation of a hierarchical management-control framework to the design of intelligent real-time scheduling systems. Originally developed for the analysis of organizations where dynamics are governed solely by the reactions of human decision makers, the control framework provides insights concerning design requirements for decision systems that react in human-like fashion within narrow domains of expertise. The framework emphasizes the dynamic balance of autonomy and decentralization required to achieve planned goals within a hierarchical organization. Applying this framework, design specifications for knowledge-based scheduling systems are developed, which are responsive to organizational dynamics as required for schedule control and replanning. An illustration is given that addresses kitchen scheduling in full-service restaurants. © 2006 Wiley Periodicals, Inc. Hum Factors Man 16: 385,408, 2006. [source] Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responsesIMMUNOLOGY, Issue 1 2010Amit Golding Summary An adequate effector response against pathogens and its subsequent inactivation after pathogen clearance are critical for the maintenance of immune homeostasis. This process involves an initial phase of T-cell effector (Teff) activation followed by the expansion of regulatory T cells (Tregs), a unique cell population that limits Teff functions. However, significant questions remain unanswered about the mechanisms that regulate the balance between these cell populations. Using an in vitro system to mimic T-cell activation in human peripheral blood mononuclear cells (PBMC), we analysed the patterns of Treg and Teff activation, with special attention to the role of type I interferon (IFN-I). Interestingly, we found that IFN-,, either exogenously added or endogenously induced, suppressed the generation of CD4+ FoxP3HI IFN-,Neg activated Tregs (aTregs) while simultaneously promoting propagation of CD4+ FoxP3Low/Neg IFN-,Pos activated Teffs (aTeffs). We also showed that IFN-,-mediated inhibition of interleukin (IL)-2 production may play an essential role in IFN-,-induced suppression of aTregs. In order to test our findings in a disease state with chronically elevated IFN-,, we investigated systemic lupus erythematosus (SLE). Plasma from patients with SLE was found to contain IFN-I activity that suppressed aTreg generation. Furthermore, anti-CD3 activated SLE PBMCs exhibited preferential expansion of aTeffs with a very limited increase in aTreg numbers. Together, these observations support a model whereby a transient production of IFN-, (such as is seen in an early antiviral response) may promote CD4 effector functions by delaying aTreg generation, but a chronic elevation of IFN-, may tip the aTeff:aTreg balance towards aTeffs and autoimmunity. [source] Dynamic Balance and Stepping Versus Tai Chi Training to Improve Balance and Stepping in At-Risk Older AdultsJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 12 2006Joseph O. Nnodim MD OBJECTIVES: To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. DESIGN: Prospective intervention trial. SETTING: Local senior centers and congregate housing facilities. PARTICIPANTS: Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. INTERVENTION: Participants were allocated to TC (n= 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n=106, mean age 78). MEASUREMENTS: At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). RESULTS: Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. CONCLUSION: Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs. [source] In Silico Modeling and Simulation of Bone Biology: A ProposalJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005Nadine A Defranoux Abstract Contemporary, computer-based mathematical modeling techniques make it possible to represent complex biological mechanisms in a manner that permits hypothesis testing in silico. This perspective shows how such approaches might be applied to bone remodeling and therapeutic research. Currently, the dominant conceptual model applied in bone research involves the dynamic balance between the continual build-up and breakdown of bone matrix by two cell types, the osteoblasts and osteoclasts, acting together as a coordinated, remodeling unit. This conceptualization has served extraordinarily well as a focal point for understanding how mutations, chemical mediators, and mechanical force, as well as external influences (e.g., drugs, diet) affect bone structure and function. However, the need remains to better understand and predict the consequences of manipulating any single factor, or combination of factors, within the context of this complex system's multiple interacting pathways. Mathematical models are a natural extension of conceptual models, providing dynamic, quantitative descriptions of the relationships among interacting components. This formalization creates the ability to simulate the natural behavior of a system, as well as its modulation by therapeutic or dietetic interventions. A number of mathematical models have been developed to study complex bone functions, but most include only a limited set of biological components needed to address a few specific questions. However, it is possible to develop larger, multiscale models that capture the dynamic interactions of many biological components and relate them to important physiological or pathological outcomes that allow broader study. Examples of such models include Entelos' PhysioLab platforms. These models simulate the dynamic, quantitative interactions among a biological system's biochemicals, cells, tissues, and organs and how they give rise to key physiologic and pathophysiologic outcomes. We propose that a similar predictive, dynamical, multiscale mathematical model of bone remodeling and metabolism would provide a better understanding of the mechanisms governing these phenomena as well as serve as an in silico platform for testing pharmaceutical and clinical interventions on metabolic bone disease. [source] Low Skeletal Muscle Mass Is Associated With Poor Structural Parameters of Bone and Impaired Balance in Elderly Men,The MINOS Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2005Pawel Szulc MD Abstract In 796 men, 50-85 years of age, decreased relative skeletal muscle mass index was associated with narrower bones, thinner cortices, and a consequent decreased bending strength (lower section modulus), as well as with impaired balance and an increased risk of falls. Introduction: In men, appendicular skeletal muscle mass (ASM) is correlated positively with BMC and areal BMD (aBMD). In elderly men, low muscle mass and strength (sarcopenia) is associated with difficulties in daily living activities. The aim of this study was to evaluate if ASM is correlated with bone size, mechanical properties of bones, balance, and risk of falls in elderly men. Materials and Methods: This study used 796 men, 50-85 years of age, belonging to the MINOS cohort. Lifestyle factors were evaluated by standardized questionnaires. Estimates of mechanical bone properties were derived from aBMD measured by DXA. ASM was estimated by DXA. The relative skeletal muscle mass index (RASM) was calculated as ASM/(body height)2.3. Results: After adjustment for age, body size, tobacco smoking, professional physical activity, and 17,-estradiol concentration, RASM was correlated positively with BMC, aBMD, external diameter, and cortical thickness (r = 0.17-0.34, p < 0.0001) but not with volumetric BMD. Consequently, RASM was correlated with section modulus (r = 0.29-0.39, p < 0.0001). Men in the lowest quartile of RASM had section modulus of femoral neck and distal radius lower by 12-18% in comparison with men in the highest quartile of RASM. In contrast, bone width was not correlated with fat mass, reflecting the load of body weight (except for L3), which suggests that the muscular strain may exert a direct stimulatory effect on periosteal apposition. After adjustment for confounding variables, a decrease in RASM was associated with increased risk of falls and of inability to accomplish clinical tests of muscle strength, static balance, and dynamic balance (odds ratio per 1 SD decrease in RASM, 1.31-2.23; p < 0.05-0.001). Conclusions: In elderly men, decreased RASM is associated with narrower bones and thinner cortices, which results in a lower bending strength. Low RASM is associated with impaired balance and with an increased risk of falls in elderly men. It remains to be studied whether low RASM is associated with decreased periosteal apposition and with increased fracture risk in elderly men, and whether the difference in skeletal muscle mass between men and women contributes to the between-sex difference in fracture incidence. [source] Antiangiogenic drugs: Current knowledge and new approaches to cancer therapyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2008Jose L. Mauriz Abstract Angiogenesis,process of new blood-vessel growth from existing vasculature,is an integral part of both normal developmental processes and numerous pathologies such as cancer, ischemic diseases and chronic inflammation. Angiogenesis plays a crucial role facilitating tumour growth and the metastatic process, and it is the result of a dynamic balance between proangiogenic and antiangiogenic factors. The potential to block tumour growth and metastases by angiogenesis inhibition represents an intriguing approach to the cancer treatment. Angiogenesis continues to be a topic of major scientific interest; and there are currently more antiangiogenic drugs in cancer clinical trials than those that fit into any other mechanistic category. Based on preclinical studies, researchers believe that targeting the blood vessels which support tumour growth could help treatment of a broad range of cancers. Angiogenic factors or their receptors, endothelial cell proliferation, matrix metalloproteinases or endothelial cell adhesion, are the main targets of an increasing number of clinical trials approved to test the tolerance and therapeutic efficacy of antiangiogenic agents. Unfortunately, contrary to initial expectations, it has been described that antiangiogenic treatment can cause different toxicities in cancer patients. The purpose of this article is to provide an overview of current attempts to inhibit tumour angiogenesis for cancer therapy. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4129,4154, 2008 [source] Interaction of UV Radiation and Inorganic Carbon Supply in the Inhibition of Photosynthesis: Spectral and Temporal Responses of Two Marine Picoplankters,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Cristina Sobrino ABSTRACT The effect of ultraviolet radiation (UVR) on inhibition of photosynthesis was studied in two species of marine picoplankton with different carbon concentration mechanisms: Nannochloropsis gaditana Lubián possesses a bicarbonate uptake system and Nannochloris atomus Butcher a CO2 active transport system. Biological weighting functions (BWFs) for inhibition of photosynthesis by UVR and photosynthesis vs irradiance (PI) curves for photosynthetically active radiation (PAR) were estimated for both species grown with an enriched CO2 supply (high dissolved inorganic carbon [DIC]: 1% CO2 in air) and in atmospheric CO2 levels (low DIC: 0.03% CO2). The response to UVR and PAR exposures was different in each species depending on the DIC treatment. Under PAR exposure, rates of maximum photosynthesis were similar between treatments in N. gaditana. However, the cultures growing in high DIC had lower sensitivity to UVR than the low DIC cultures. In contrast, N. atomus had higher rates of photosynthesis under PAR exposure with high DIC, but the BWFs were not significantly different between treatments. The results suggest that one or more processes in N. gaditana associated with HCO3, transport are target(s) for UV photodamage because there was relatively less UV inhibition of the high DIC-grown cultures in which inorganic carbon fixation is supplied by passive CO2 diffusion. Time courses of photochemical efficiency in PAR, during UV exposure and during subsequent recovery in PAR, were determined using a pulse amplitude modulated fluorometer. The results were consistent with the BWFs. In all time courses, a steady state was obtained after an initial decrease, consistent with a dynamic balance between damage and repair as found for other phytoplankton. However, the relationship of response to exposure showed a steep decline in activity that is consistent with a constant rate of repair. A novel feature of a model developed from a constant repair rate is an explicit threshold for photosynthetic response to UV. [source] LiFE Pilot Study: A randomised trial of balance and strength training embedded in daily life activity to reduce falls in older adultsAUSTRALIAN OCCUPATIONAL THERAPY JOURNAL, Issue 1 2010Lindy Clemson Background:,Exercise as a falls prevention strategy is more complex with people at risk than with the general population. The Lifestyle approach to reducing Falls through Exercise (LiFE) involves embedding balance and lower limb strength training in habitual daily routines. Methods:,A total of 34 community-residing people aged ,70 years were randomised either into the LiFE programme or into a no-intervention control group and followed up for six months. Inclusion criteria were two or more falls or an injurious fall in the past year. Results:,There were 12 falls in the intervention group and 35 in the control group. Therelative risk (RR) analysis demonstrated a significant reduction in falls (RR = 0.23; 0.07,0.83). There were indications that dynamic balance (P = 0.04 at three months) and efficacy beliefs (P = 0.04 at six months) improved for the LiFE programme participants. In general, secondary physical and health status outcomes, which were hypothesised as potential mediators of fall risk, improved minimally and inconsistently. Conclusions:,LiFE was effective in reducing recurrent falls in this at-risk sample. However, there were minimal changes in secondary measures. The study was feasible in terms of recruitment, randomisation, blinding and data collection. A larger randomised trial is needed to investigate long-term efficacy, mechanisms of benefit and clinical significance of this new intervention. [source] Control of mucosal polymicrobial populations by innate immunityCELLULAR MICROBIOLOGY, Issue 9 2009Katie L. Mason Summary The gastrointestinal tract carries out the complex process of localizing the polymicrobial populations of the indigenous microbiota to the lumenal side of the GI mucosa while absorbing nutrients from the lumen and preventing damage to the mucosa. This process is accomplished through a combination of physical, innate and adaptive host defences and a ,strategic alliance' with members of the microbiota. To cope with the constant exposure to a diverse microbial community, the GI tract, through the actions of a number of specialized cells in the epithelium and lamina propria, has layers of humoral, physical and cellular defences that limit attachment, invasion and dissemination of the indigenous microbiota. However, the role of the microbiota in this dynamic balance is vital and serves as another level of ,innate' defence. We are just beginning to understand how bacterial metabolites aid in the control of potential pathogens within the microbiota and limit inflammatory responses to the microbiota, concepts that will impact our understanding of the biological effects of antibiotics, diet and probiotics on mucosal inflammatory responses. [source] Sphingosine kinase signalling in immune cellsCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2005Tay Hwee Kee SUMMARY 1.,Sphingolipids are potent second messengers modulating biochemical intracellular events and acting as ligands to mediate extracellular systems. Sphingosine kinase (SPHK) is the enzyme that phosphorylates sphingosine into sphingosine-1-phosphate (S1P), a potent bioactive sphingolipid. 2.,The fact that SPHK is highly conserved from protozoa to mammals and is ubiquitous in living tissues reveals important roles of the SPHK pathway for the maintenance of health maintenance. This is also supported by comprehensive reviews on features of its main product, S1P, as having intracellular as well as extracellular roles, inducing a wide range of physiological responses from triggering Ca2+ release from internal stores to promoting growth and cell motility. 3.,Immune cell activities have been shown to be modulated by the dynamic balance between ceramide, sphingosine and S1P, conceptualized as a rheostat. Cell proliferation, differentiation, motility and survival have been attributed to the regulatory actions of S1P. The properties of SPHK activity in immune cells are linked to the functions of triggered growth and survival factors, phorbol esters, hormones, cytokines and chemokines, as well as antigen receptors, such as Fc,RI and Fc,RI. 4.,Mechanisms of the SPHK signalling pathway are explored as new targets for drug development to suppress inflammation and other pathological conditions. [source] |