Home About us Contact | |||
Dye Exclusion (dye + exclusion)
Selected AbstractsCytotoxicity of substances leached or dissolved from pulp capping materialsINTERNATIONAL ENDODONTIC JOURNAL, Issue 8 2005B. N. Cavalcanti Abstract Aim, To evaluate the cytotoxic effects of substances leached or dissolved from pulp capping materials on human pulp fibroblasts. Methodology, The substances were applied to cell cultures in conditioned media. The experimental groups were: GI (control; n = 24) , cultures treated with fresh medium; GII (n = 24) , cultures treated with calcium hydroxide cement; GIII (n = 24) , cultures treated with adhesive resin and GIV (n = 24) , cultures treated with 37% orthophosphoric acid. The media were conditioned by placing the crude materials in contact with fresh culture medium for 1 h. The cytotoxicity analysis was performed using the Trypan blue dye exclusion assay at times of 0, 6, 12 and 24 h for cell viability assay, and at 1, 3, 5 and 7 days for survival assay. Data were treated by anova (P < 0.05) and Tukey's test (P < 0.05). Results, GI and II presented similar cell viability and cell growth. GIII and IV exhibited statistically significant lower percentages of cell viability: GIV only at the 0 h experimental time, whereas in GIII this viability markedly diminished reaching values of 10% by 12 h. Cell growth was impaired only in cultures of GIII. Conclusions, Substances dissolved from the adhesive system tested were cytotoxic for human dental pulp fibroblasts in culture, whilst substances leached from calcium hydroxide were biocompatible. [source] The effects of telomerase inhibition on prostate tumor-initiating cellsINTERNATIONAL JOURNAL OF CANCER, Issue 2 2010Calin O. Marian Abstract Prostate cancer is the most common malignancy in men, and patients with metastatic disease have poor outcome even with the most advanced therapeutic approaches. Most cancer therapies target the bulk tumor cells, but may leave intact a small population of tumor-initiating cells (TICs), which are believed to be responsible for the subsequent relapse and metastasis. Using specific surface markers (CD44, integrin ,2,1 and CD133), Hoechst 33342 dye exclusion, and holoclone formation, we isolated TICs from a panel of prostate cancer cell lines (DU145, C4-2 and LNCaP). We have found that prostate TICs have significant telomerase activity which is inhibited by imetelstat sodium (GRN163L), a new telomerase antagonist that is currently in Phase I/II clinical trials for several hematological and solid tumor malignancies. Prostate TICs telomeres were of similar average length to the telomeres of the main population of cells and significant telomere shortening was detected in prostate TICs as a result of imetelstat treatment. These findings suggest that telomerase inhibition therapy may be able to efficiently target the prostate TICs in addition to the bulk tumor cells, providing new opportunities for combination therapies. [source] Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophagesJOURNAL OF APPLIED TOXICOLOGY, Issue 1 2009Jonghoon Choi Abstract Photoluminescent silicon nanoparticles have a bright and stable fluorescence and are promising candidates for bio-imaging, cell staining and drug delivery. With increasing development of nanotechnology applications for biomedicine, an understanding of the potential toxicity of nanoparticles is needed to assess safety concerns for clinical applications. The objective of this study was to compare biological responses of silicon nanoparticles (SNs, 3 nm diameter) with silicon microparticles (SMs, ,100,3000 nm diameter) in cultured murine macrophages (RAW 264.7) using standard protocols for assessing cytotoxicity/cell viability and inflammatory responses developed for micron-sized particles. SNs and SMs were exposed to macrophages with and without addition of endotoxin lipopolysaccharide (LPS), a positive inducer of tumor necrosis factor-alpha (TNF- ,), interleukin 6 (IL-6), and nitric oxide (NO). Cytotoxicity was assayed using the dye exclusion and MTT assays. Cell supernatants were assayed for production TNF- ,, IL-6 and NO. SNs at concentrations ,20 µg ml,1 exhibited no cytotoxicity or inflammatory responses; however, SNs and SMs >20 and 200 µg ml,1, respectively, increased cytotoxicity compared with controls. SMs induced concentration-related increases in TNF- , and IL-6 production; in contrast, the production of these cytokines was shown to decrease with increasing concentrations of SNs. NO production was not induced by SNs or SMs alone. Fluorescence microscopy demonstrated that SNs were associated with the macrophages, either internalized or attached to cell membranes. In conclusion, evaluating differences in biological responses for nanoparticles compared with microparticles of the same material may help improve tests to assess biological responses of nanoparticles that may be used in biomedical applications. Copyright © 2008 John Wiley & Sons, Ltd. [source] TC -tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermiaJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008N. K. Prasad Abstract La1,xSrxMnO3, a ferromagnet with high magnetization and Curie temperature TC below 70°C, enables its use for magnetic hyperthermia treatment of cancer with a possibility of in vivo temperature control. We found that La0.73Sr0.27MnO3 particles of size range 20,100 nm showed saturation magnetization around 38 emu/g at 20 kOe and a TC value of 45°C. Aqueous suspension of these nanoparticles was prepared using a polymer, acrypol 934, and the biocompatibility of the suspension was examined using HeLa cells. A good heating ability of the magnetic suspension was obtained in the presence of AC magnetic field, and it was found to increase with the amplitude of field. The suspension having concentration of 0.66 mg/mL (e.g., 0.66 mg of nanoparticles with acropyl per milliliter of culture media) was observed to be biocompatible even after 96 h of treatment, as estimated by sulforhodamine B and trypan blue dye exclusion assays. Further, the treatment with the aforementioned concentration did not alter the microtubule cytoskeleton or the nucleus of the cells. However, the bare particles (concentration of 0.66 mg of nanoparticles per milliliter of culture media, but without acropyl) decreased the viability of cell significantly. Our in vitro studies suggest that the suspension (concentration of 0.66 mg/mL) may further be analyzed for in vivo studies. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source] A bioluminescent HL-60 cell line to assay anti-leukaemia therapeutics under physiological conditionsLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 1 2008Maria P. Isaza Abstract Screens for compounds and proteins with anti-cancer activity employ viability assays using relevant cancer cell lines. For leukaemia studies, the human leukaemia cell line, HL-60, is often used as a model system. To facilitate the discovery and investigation of anti-leukaemia therapeutics under physiological conditions, we have engineered HL-60 cells that stably express firefly luciferase and produce light that can be detected using an in vivo imaging system (IVIS). Bioluminescent HL-60luc cells could be rapidly detected in whole blood with a sensitivity of approximately 1000 viable cells/200 µl blood. Treatment of HL-60luc cells with the drug chlorambucil revealed that the bioluminescent viability assay is able to detect cell death earlier than the Trypan blue dye exclusion assay. HL-60luc cells administered intraperitoneally (i.p.) or intravenously (i.v.) were visualized in living mice. The rapidity and ease of detecting HL-60luc cells in biological fluid indicates that this cell line could be used in high-throughput screens for the identification of drugs with anti-leukaemia activity under physiological conditions. Copyright © 2007 John Wiley & Sons, Ltd. [source] |