Dwarf Pine (dwarf + pine)

Distribution by Scientific Domains


Selected Abstracts


Effect of Grazing on Restoration of Endemic Dwarf Pine (Pinus culminicola Andresen et Beaman) Populations in Northeastern Mexico

RESTORATION ECOLOGY, Issue 1 2005
J Jiménez
Abstract A pilot experiment designed to test the effect of cattle, small mammals, and elevation on the success of reforestation of an endemic dwarf pine species in northeastern Mexico was implemented. Pinus culminicola (Andresen et Beaman) grows only in four high peaks in the Sierra Madre Oriental and is under pressure from grazing, wildfires, and human activities such as mining, road development for timber extraction, and telecommunication and aerial navigation devices. We planted and monitored 2-year-old seedlings at three elevations within the natural distribution range of this species at Cerro El Potosí in Nuevo León, Mexico. At each elevation three treatments were established: (1) seedlings protected from cattle plus small mammals, (2) seedlings protected from cattle, and (3) seedlings with free access to cattle and small mammals. Seedling survival was approximately 50% in (1) after 4 years, but there were no surviving seedlings with free access to cattle. Elevation in general did not account for variation in survival. Seedling growth was poor during the 4 years, which implies that seedlings remain susceptible to grazing and trampling by cattle and small mammals. The implications for a large-scale restoration program are discussed. [source]


Vegetation and disturbance history of a rare dwarf pitch pine community in western New England, USA

JOURNAL OF BIOGEOGRAPHY, Issue 10-11 2002
Glenn Motzkin
Abstract Aim, This study documents the vegetation history and age-structure of a rare, ridgetop dwarf pine,oak community and compares the dynamics of this unusual vegetation with similar dwarf pine communities found elsewhere in the north-eastern United States (US). Location, The study area is located on the summit of Mt Everett in the Taconic Mountains of south-western Berkshire County, Massachusetts, USA (42°06,N 73°26,W). Methods, Vegetation composition, tree age-structure, physical site characteristics, and evidence of fire and other disturbances were determined for twelve 15 × 15 m plots in dwarf pine,oak vegetation and two plots in oak forests on the summit. Age-structure analyses, tree-ring patterns, and historical records of human and natural disturbance were used to investigate the long-term history and dynamics of the summit vegetation. Results, The summit of Mt Everett has been dominated by dwarf pines (1,3 m tall) and ericaceous shrubs similar to the modern vegetation throughout the historical period; there is no evidence that tall-stature forests occurred on the site at any point in the past few centuries. The summit supports uneven-aged stands; pitch pine (Pinus rigida) recruitment began in the 1830s and occurred in every decade since the 1860s. Average pitch pine age is seventy-eight with a range of 12,170 years. Red oak (Quercus rubra) and red maple (Acer rubrum) increased in importance in the twentieth century, with most stems establishing from 1940 to 1980. Pitch pine radial growth rates averaged <0.5 mm year,1 while red oak and red maple averaged 1.0 and 0.8 mm year,1, respectively. In some areas, hardwoods have overtopped pitch pines, apparently resulting in pitch pine mortality. Whereas most dwarf pitch pine communities occur on sites that burn frequently and have a high degree of cone serotiny, we found no evidence of recent fires or cone serotiny. Small amounts of macroscopic charcoal that we documented may have resulted from fires in the pre-European or early historical periods. Conclusions, Harsh edaphic conditions and chronic low-level disturbances on the summit, including frequent winter storms, have apparently contributed to the establishment, long-term persistence, and slow radial growth of dwarf pitch pines on Mt Everett. The ability of dwarf pines to persist on a site in the absence of frequent fire is highly unusual among North-eastern barrens and has not been well-incorporated into previous conceptual ecological models of these communities. Our results suggest that even among North-eastern barrens, the summit of Mt Everett is characterized by highly unusual vegetation and dynamics. The site has long been recognized as regionally significant and should be afforded the strictest conservation protection. With no evident history of human disturbance or recent fire, there is no apparent need for immediate active management of the site. [source]


Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila)

MOLECULAR ECOLOGY, Issue 6 2001
F. Gugerli
Abstract We studied the phylogenetic relationships among the three stone pine species, Pinus cembra, P. sibirica, and P. pumila, using chloroplast microsatellites and mitochondrial nad1 intron 2 sequences. The three chloroplast microsatellite loci combined into a total of 18 haplotypes. Fourteen haplotypes were detected in 15 populations of P. cembra and one population of P. sibirica, five of which were shared between the two species, and the two populations of P. pumila comprised four species-specific haplotypes. Mitochondrial intron sequences confirmed this grouping of species. Sequences of P. cembra and P. sibirica were identical, but P. pumila differed by several nucleotide substitutions and insertions/deletions. A repeat region found in the former two species showed no intraspecific variation. These results indicate a relatively recent evolutionary separation of P. cembra and P. sibirica, despite their currently disjunct distributions. The species-specific chloroplast and mitochondrial markers of P. sibirica and P. pumila should help to trace the hybridization in their overlapping distribution area and to identify fossil remains with respect to the still unresolved postglacial re-colonization history of these two species. [source]


Needle traits of an evergreen, coniferous shrub growing at wind-exposed and protected sites in a mountain region: does Pinus pumila produce needles with greater mass per area under wind-stress conditions?

PLANT BIOLOGY, Issue 2009
S. Nagano
Abstract Snow depth is one of the most important determinants of vegetation, especially in mountainous regions. In such regions, snow depth tends to be low at wind-exposed sites such as ridges, where stand height and productivity are limited by stressful environmental conditions during winter. Siberian dwarf pine (Pinus pumila Regel) is a dominant species in mountainous regions of Japan. We hypothesized that P. pumila produces needles with greater mass per area at wind-exposed sites than at wind-protected sites because it invests more nitrogen (N) in cell walls at the expense of N investment in the photosynthetic apparatus, resulting in increased photosynthetic N use efficiency (PNUE). Contrary to our hypothesis, plants at wind-exposed site invested less resources in needles, as exhibited by lower biomass, N, Rubisco and cell wall mass per unit area, and had higher photosynthetic capacity, higher PNUE and shorter needle life-span than plants at a wind-protected site. N partitioning was not significantly different between sites. These results suggest that P. pumila at wind-exposed sites produces needles at low cost with high productivity to compensate for a short leaf life-span, which may be imposed by wind stress when needles appear above the snow surface in winter. [source]