Home About us Contact | |||
DW Imaging (dw + imaging)
Selected AbstractsPredicting the Histopathological Grade of Cerebral Gliomas Using High b value MR DW Imaging at 3-TeslaJOURNAL OF NEUROIMAGING, Issue 3 2008Juan Alvarez-Linera MD ABSTRACT BACKGROUND Our aim was to prospectively assess whether magnetic resonance (MR) diffusion-weighted (DW) imaging using high b values can predict better than b value of 1,000 s/mm2 the histopathological grade of cerebral gliomas. METHODS Fifty-four patients with histologically verified brain gliomas (35 high-grade and 19 low-grade gliomas) underwent MR DW imaging. Isotropic DW images and apparent diffusion coefficient (ADC) were obtained with b values of 1,000 and 3,000 s/mm2. Each tumor was evaluated as being hyperintense, iso-intense or hypointense to normal, contralateral-hemisphere white matter. RESULTS Most of the patients with high- and low-grade gliomas showed areas of increased signal intensity on their isotropic images, obtained with a b value of 1,000 s/mm2. However, with a b value of 3,000 s/mm2 the areas of increased signal intensity were seen in 97.1% of the high-grade gliomas, while 94.7% of the low-grade gliomas showed no area of increased signal intensity. The mean area under the ROC curve for ADC ratio, obtained with a b value of 3,000 s/mm2, was significantly higher than that obtained with 1,000 s/mm2 (.932 vs. .856, P= .04). CONCLUSION High b value DW MR might be useful as a complementary tool in preoperative assessment of the histopathological grading of cerebral gliomas. [source] Time evolution of cerebral perfusion and apparent diffusion coefficient measured by magnetic resonance imaging in a porcine stroke modelJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2002Lisbeth Røhl MD Abstract Purpose To demonstrate the feasibility of sequential diffusion-weighted (DW) and perfusion-weighted (PW) magnetic resonance imaging (MRI) of a recently developed porcine stroke model and to evaluate the evolution of cerebral perfusion and the apparent diffusion coefficient (ADC) over time. Materials and Methods In five pigs, DW imaging (DWI) and PW imaging (PWI) was carried out for 7 hours after stroke onset, starting 1 hour after middle cerebral artery occlusion (MCAO). Results The DWI lesion volume increased significantly with time, and final DWI lesion volume correlated well with lesion area on histological sections (r = 0.910). T2 changes could be recognized 3 hours after stroke onset. At 1 hour the ADC ratio (ischemic lesion/contralateral side) was reduced to 0.81 in the caudate-putamen and to 0.87 in the cortex, and the cerebral blood flow ratio was reduced to 0.40 in the caudate-putamen and 0.51 in the cortex. Conclusion The level of flow reduction in the caudate-putamen and the cortex after 1 hour is in good correlation with human thresholds of irreversible and reversible ischemic damage, and accordingly, this model might be a model for mechanisms of infarct evolution and therapeutic intervention. J. Magn. Reson. Imaging 2002;15:123,129. © 2002 Wiley-Liss, Inc. [source] Predicting the Histopathological Grade of Cerebral Gliomas Using High b value MR DW Imaging at 3-TeslaJOURNAL OF NEUROIMAGING, Issue 3 2008Juan Alvarez-Linera MD ABSTRACT BACKGROUND Our aim was to prospectively assess whether magnetic resonance (MR) diffusion-weighted (DW) imaging using high b values can predict better than b value of 1,000 s/mm2 the histopathological grade of cerebral gliomas. METHODS Fifty-four patients with histologically verified brain gliomas (35 high-grade and 19 low-grade gliomas) underwent MR DW imaging. Isotropic DW images and apparent diffusion coefficient (ADC) were obtained with b values of 1,000 and 3,000 s/mm2. Each tumor was evaluated as being hyperintense, iso-intense or hypointense to normal, contralateral-hemisphere white matter. RESULTS Most of the patients with high- and low-grade gliomas showed areas of increased signal intensity on their isotropic images, obtained with a b value of 1,000 s/mm2. However, with a b value of 3,000 s/mm2 the areas of increased signal intensity were seen in 97.1% of the high-grade gliomas, while 94.7% of the low-grade gliomas showed no area of increased signal intensity. The mean area under the ROC curve for ADC ratio, obtained with a b value of 3,000 s/mm2, was significantly higher than that obtained with 1,000 s/mm2 (.932 vs. .856, P= .04). CONCLUSION High b value DW MR might be useful as a complementary tool in preoperative assessment of the histopathological grading of cerebral gliomas. [source] Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomenMAGNETIC RESONANCE IN MEDICINE, Issue 5 2008Jie Deng Abstract Multishot FSE (fast spin echo)-based diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI offers the potential to reduce susceptibility artifacts associated with single-shot DW-EPI (echo-planar imaging) approaches. However, DW-PROPELLER in the abdomen is challenging due to the large field-of-view and respiratory motion during DW preparation. Incoherent signal phase due to motion will violate the Carr-Purcell-Meiboom-Gill (CPMG) conditions, leading to destructive interference between spin echo and stimulated echo signals and consequent signal cancellation. The SPLICE (split-echo acquisition of FSE signals) technique can mitigate non-CPMG artifacts in FSE-based sequences. For SPLICE, spin echo and stimulated echo are separated by using imbalanced readout gradients and extended acquisition window. Two signal families each with coherent phase properties are acquired at different intervals within the readout window. Separate reconstruction of these two signal families can avoid destructive phase interference. Phantom studies were performed to validate signal phase properties with different initial magnetization phases. This study evaluated the feasibility of combining SPLICE and PROPELLER for DW imaging of the abdomen. It is demonstrated that DW-SPLICE-PROPELLER can effectively mitigate non-CPMG artifacts and improve DW image quality and apparent diffusion coefficient (ADC) map homogeneity. Magn Reson Med 59:947,953, 2008. © 2008 Wiley-Liss, Inc. [source] |