DNA-binding Ability (DNA-bind + ability)

Distribution by Scientific Domains


Selected Abstracts


Copper(II) Complexes Containing N,N-Donor Ligands and Dipeptides Act as Hydrolytic DNA-Cleavage Agents

CHEMISTRY & BIODIVERSITY, Issue 6 2004
Pulimamidi
Copper(II) complexes are known to play a significant role in both naturally occurring biological systems and pharmaceutical agents. Recently, CuII complexes have gained importance in DNA cleavage essential for the development of anticancer drugs and chemotherapeutic agents. Therefore, we have designed small molecules, consisting of a metal ion, N,N-donor ligands, and dipeptides, to probe their DNA-cleaving potential. Accordingly, the interaction of CuII with ethylenediamine, histamine and the dipeptides histidylglycine, histidylalanine, and histidylleucine has been investigated. The binding modes, stabilities, and geometries of these complexes were determined by various physicochemical techniques. Their DNA-binding abilities were probed by absorption and fluorescence spectroscopy, and their DNA-cleavage potential was tested by electrophoresis. [source]


Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Ricardo E. Perez
Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53. J. Cell. Physiol. 225: 394,405, 2010. © 2010 Wiley-Liss, Inc. [source]


Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1

MOLECULAR MICROBIOLOGY, Issue 3 2000
Nan Wang
Escherichia coli CspA, a major cold shock protein, is dramatically induced upon temperature downshift. As it binds co-operatively to single-stranded DNA (ssDNA) and RNA without apparent sequence specificity, it has been proposed that CspA acts as an RNA chaperone to facilitate transcription and translation at low temperature. CspA consists of a five-stranded ,-barrel structure containing two RNA-binding motifs, RNP1 and RNP2. Eukaryotic Y-box proteins, such as human YB-1, are a family of nucleic acid-binding proteins that share a region of high homology with CspA (43% identity), termed the cold shock domain (CSD). Their cellular functions are very diverse and are associated with growth-related processes. Here, we replaced the six-residue loop region of CspA between the ,3 and ,4 strands with the corresponding region of the CSD of human YB-1 protein. The resulting hybrid protein became capable of binding to double-stranded DNA (dsDNA) in addition to ssDNA and RNA. The dsDNA-binding ability of an RNP1 point mutant (F20L) of the hybrid was almost unchanged. On the other hand, the dsDNA-binding ability of the hybrid protein was abolished in high salt concentrations in contrast to its ssDNA-binding ability. These results indicate that the loop region between the ,3 and ,4 strands of Y-box proteins, which is a little longer and more basic than that of CspA, plays an important role in their binding to dsDNA. [source]


TBX3 and its splice variant TBX3 + exon 2a are functionally similar

PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2008
Willem M.H. Hoogaars
Summary Tbx3, a member of the conserved family of T-box developmental transcription factors, is a transcriptional repressor required during cardiogenesis for the formation and specification of the sinoatrial node, the pacemaker of the heart. Both the TBX3 and the highly related TBX2 genes are also associated with several cancers, most likely as a consequence of their powerful anti-senescence properties mediated via suppression p14Arf and p21CIP expression. In melanoma, the TBX2 gene is frequently amplified and inhibition of Tbx2 function leads to senescence and up-regulation of p21CIP, a Tbx2 target gene. Tbx3 + 2a is a splice variant containing an extra 20 amino acids encoded by exon 2a inserted into the highly conserved T-box DNA-binding domain. We find here that Tbx3 + 2a is evolutionary conserved and that similar insertions are largely absent from the T-box domains of other T-box factors. Tbx3 + 2a has been reported to lack DNA-binding ability and act as a functional antagonist of Tbx3. By contrast, we now demonstrate that both Tbx3 and Tbx3 + 2a bind the consensus T-element, the p21CIP1 promoter, and the Nppa cardiac target gene. Both isoforms also function as repressors of p21CIP1 and Nppa promoter activity and interact with homeobox factor Nkx2-5. When ectopically expressed in the embryonic heart of mice, Tbx3 and Tbx3 + 2a both suppressed chamber formation and repressed expression of cardiac chamber markers Nppa and Cx40. The results suggest that in the assays used, Tbx3 and Tbx3 + 2a are functionally equivalent and that like Tbx2, Tbx3 may also function as an anti-senescence factor in melanoma. [source]