Home About us Contact | |||
DNA Methylation (dna + methylation)
Kinds of DNA Methylation Terms modified by DNA Methylation Selected AbstractsDNA Methylation, Genomic Silencing, and Links to Nutrition and CancerNUTRITION REVIEWS, Issue 6 2005Dale C. McCabe DNA methylation is a heritable epigenetic feature that is associated with transcriptional silencing, X-chromosome inactivation, genetic imprinting, and genomic stability. The addition of the methyl group is catalyzed by a family of DNA methyltransferases whose cosubstrates are DNA and S-adenosylmethionine, the latter being derived from the methionine cycle. Aberrant DNA methylation is linked to numerous pathologies, including cancer. The purpose of this review is to describe DNA methylation and its functions, to examine the relationship between dietary methyl insufficiency and DNA methylation, and to evaluate the associations between DNA methylation and cancer. [source] BRCA1 Expression Status in Relation to DNA Methylation of the BRCA1 Promoter Region in Sporadic Breast CancersCANCER SCIENCE, Issue 5 2000Youko Niwa To understand the biological role of BRCA1 in sporadic breast cancers, the relationship between DNA methylation of the BRCA1 Promoter region and BRCA1 expression was studied using molecular biological and immunohistochemical methods. Furthermore, BRCA1 expression was compared with the expression of various cell cycle regulatory proteins and the morphological nuclear grade of cancer cells. Of 32 sporadic breast cancers investigated in this study, 10 (31%) revealed DNA methylation of the BRCA1 promoter region. The expression of BRCA1 was observed in the nuclei of cancer cells and 18 (56%) of 32 cancers were positive for BRCA1 immunoreactivity. Breast cancers with BRCA1 methylation lacked BRCA1 expression, except for only three cancers, and there was a significant inverse relationship between BRCA1 methylation and its expression in sporadic breast cancers (P=0.043). Compared with the expression of various cell cycle regulatory proteins, breast cancers with BRCA1 methylation showed decreased expression of estrogen receptor (P=0.016) and p27 (P=0.018) and increased expression of p21 (P=0.011). Furthermore, breast cancers without BRCA1 expression or with BRCA1 methylation had a tendency to contain nuclei with higher grade. These findings indicate that BRCA1 methylation might greatly influence its expression and BRCA1 expression might play an important role in cell cycle regulation and influence the grade of malignancy of sporadic breast cancers. [source] Epigenetic reprogramming: Enforcer or enabler of developmental fate?DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2010Alexander N. Combes A single fertilized egg is programmed to differentiate into a multitude of distinct cell types that comprise a multicellular organism. Epigenetic mechanisms such as DNA methylation and histone modifications are intricately involved in regulating developmental potential and cellular identity by establishing permissive or repressive chromatin states that are mitotically heritable. Here, we review the dynamics of major epigenetic marks during early mammalian development, and explore the question of whether DNA methylation and chromatin modifications enable or enforce changes that lead to the first cell fate decision. [source] Epigenetic regulation of the imprinted U2af1-rs1 gene during retinoic acid-induced differentiation of embryonic stem cellsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2006Noelia Andollo Epigenetic modifications such as DNA methylation and changes in chromatin structure are changes in the chemical composition or structure of DNA that work by regulating gene expression. Their mechanisms of action have been generally studied in imprinted genes. The present work analyzes the involvement of these mechanisms in the expression of the U2af1-rs1 imprinted gene during the differentiation process of embryonic stem (ES) cells induced by retinoic acid. By DNA digestion with methylation-dependent or independent restriction enzymes and consecutive Southern blot, we have found that methylation of the U2af1-rs1 gene increases in differentiated ES cells and in embryoid bodies. However, northern blot and real-time reverse transcription,polymerase chain reaction analysis showed a higher expression of the U2af1-rs1 gene in differentiated ES cells and in embryoid bodies than in undifferentiated ones. On the other hand, the sensitivity to DNase-I assay demonstrated an open chromatin conformation for differentiated cells with regard to undifferentiated ES cells. Our results suggest that the expression of the U2af1-rs1 gene would be regulated by changes in chromatin structure rather than by DNA methylation during the RA-induced process of differentiation of ES cells. [source] Associations of risk factors obesity and occupational airborne exposures with CDKN2A/p16 aberrant DNA methylation in esophageal cancer patientsDISEASES OF THE ESOPHAGUS, Issue 7 2010S. Mohammad Ganji SUMMARY It is known that obesity and occupational airborne exposure such as dust are among risk factors of esophageal cancer development, in particular squamous cell carcinoma (SCC) of esophagus. Here, we tested whether these factors could also affect aberrant DNA methylation. DNAs from 44 fresh tumor tissues and 19 non-tumor adjacent normal tissues, obtained from 44 patients affected by SCC of esophagus (SCCE), were studied for methylation at the CDKN2A/p16 gene promoter by methylation-specific polymerase chain reaction assay. Statistical methods were used to assess association of promoter methylation with biopathological, clinical, and personal information data, including obesity and airborne exposures. Methylation at the CDKN2A/p16 gene promoter was detected in 12 out of 44 tumor samples. None of the non-tumor tissues exhibited the aberrant methylation. Our results confirmed previously described significant association with low tumor stage (P= 0.002); in addition, we found that obesity (P= 0.001) and occupational exposure (P= 0.008) were both significantly associated with CDKN2A/p16 promoter methylation. This study provides evidence that obesity and occupational exposure increase the risk of developing esophageal cancer through an enhancement of CDKN2A/p16 promoter methylation. [source] Proteomic analysis of liver cancer cells treated with 5-Aza-2,-deoxycytidine (AZA),DRUG DEVELOPMENT RESEARCH, Issue 1 2009Shujun Bai Abstract 5-Aza-2,-deoxycytidine (AZA) is a potent inhibitor of DNA methylation that exhibits anti-tumor activity in a variety of tumor cells via reactivation of tumor suppressor genes. However, few studies have been done on the biological and clinical significance of AZA in human hepatocellular carcinoma. To identify potential genes that may be aberrantly methylated and confer growth advantage to neoplastic cells and to better understand the molecular mechanism(s) underlying AZA anti-tumor activity, a proteomics approach was used to annotate global gene expression changes of HepG2 cell line pre- and post-treatment with AZA. A total of 56 differentially expressed proteins were identified by 2D gel analysis, 48 of which were up-regulated while the remaining 8 were down regulated. Among the identified proteins, eight of these showed marked changed proteins, including seven up-regulated proteins: glutathione S-transferase P, protein DJ-1, peroxiredoxin-2, UMP-CMP kinase, cytochrome c-type heme lyase, enhancer of rudimentary homolog, profilin-1, and one down-regulated protein, heat-shock protein ,,1. The possible implication of these proteins in hepatocarcinogenesis is discussed. We tested two up-regulated proteins, glutathione S-transferase P and peroxiredoxin-2, using RT-PCR and their expression was consistent with the results obtained in the protein level. Both of these genes were methylated when methylation-specific PCR was used against their promoter regions. Following treatment with AZA, the gene promoter regions were found to be unmethylated, concomitant with overexpression of the proteins compared to HepG2 cells without treatment. These data provide useful information in evaluating the therapeutic potential of AZA for the treatment of HCC. Drug Dev Res 69, 2009. © 2009 Wiley-Liss, Inc. [source] Determination of DNA methylation by COBRA: A comparative study of CGE with LIF detection and conventional gel electrophoresisELECTROPHORESIS, Issue 17 2009Simon Goedecke Abstract DNA methylation as an epigenetic modification of the human genome is under emphatic investigation. Several studies have demonstrated a role of DNA methylation in oncogenesis. In conjunction with histone modifications, DNA methylation may cause the formation of heterochromatin and thus mediate the inactivation of gene transcription. It is important to develop methods that allow for an accurate quantification of the amount of DNA methylation in particular DNA regions, to gain information concerning the threshold of methylation levels necessary for gene inactivation. In this article, a CGE method with on-column LIF detection using SYBR Green is compared with a conventional slab-gel electrophoresis. We thus investigate the validity to analyze DNA methylation in the samples of a combined bisulfite restriction analysis. It is demonstrated that CGE is superior to gel electrophoresis in means of linearity, precision, accuracy, automatization (high throughput), and sample consumption. However, gel electrophoresis is easier to perform (simple devices, no PC usage), and the running costs are comparatively low. A further advantage of CGE is the sparse use of toxic compounds (MeOH and SYBR Green), whereas gel electrophoresis is performed in polyacrylamide gels with ethidium bromide staining. [source] Detection and separation of nucleoside-5'-monophosphates of DNA by conjugation with the fluorescent dye BODIPY and capillary electrophoresis with laser-induced fluorescence detectionELECTROPHORESIS, Issue 13 2005Michael Cornelius Abstract We investigated the separation and detection of the 5'-monophosphates of 2'-deoxynucleosides selectively conjugated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza- s -indacene-3-propionyl ethylene diamine hydrochloride (BODIPY FL EDA) at the 5'-phosphate group using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). BODIPY conjugates of the four common deoxynucleoside-5'-monophosphates (2'-deoxyguanosine-5'-monophosphate, 2'-deoxyadenosine-5'-monophosphate, 2'-deoxycytidine-5'-monophosphate, and thymidine-5'-monophosphate) were prepared and subjected to CE-LIF to serve as standard compounds for peak assignment and to develop separation conditions for the analysis of DNA. BODIPY conjugates were detected and resolved by CE-LIF after digestion of DNA or an oligonucleotide to 5'-monophosphates by nuclease P1 (NP 1) and fluorescence labeling without further purification step. Comparative analyses of calf-thymus DNA digested either with micrococcal nuclease/spleen phosphodiesterase to 3'-monophosphates or with NP 1 to 5'-monophosphates showed that both versions of the fluorescence postlabeling assay were equally efficient and sensitive. Moreover, using the same assay, 2'-deoxyuridine and 2'-deoxy-5methylcytidine were identified in bisulfite treated DNA after NP 1 digestion indicating that fluorescence postlabeling of 2'-deoxyribonucleoside-5'-monophosphates with BODIPY FL EDA and detection by CE-LIF has the potential to determine DNA damage and genomic DNA methylation. [source] Folate, colorectal carcinogenesis, and DNA methylation: Lessons from animal studiesENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2004Young-In Kim Abstract Folate, a water-soluble B vitamin and cofactor in one-carbon transfer, is an important nutritional factor that may modulate the development of colorectal cancer (CRC). Epidemiologic and clinical studies indicate that dietary folate intake and blood folate levels are inversely associated with CRC risk. Collectively, these studies suggest an , 40% reduction in the risk of CRC in individuals with the highest dietary folate intake compared with those with the lowest intake. Animal studies using chemical and genetically predisposed rodent models have provided considerable support for a causal relationship between folate depletion and colorectal carcinogenesis as well as a dose-dependent protective effect of folate supplementation. However, animal studies also have shown that the dose and timing of folate intervention are critical in providing safe and effective chemoprevention; exceptionally high supplemental folate levels and folate intervention after microscopic neoplastic foci are established in the colorectal mucosa promote, rather than suppress, colorectal carcinogenesis. These animal studies, in conjunction with clinical observations, suggest that folate possesses dual modulatory effects on carcinogenesis depending on the timing and dose of folate intervention. Folate deficiency has an inhibitory effect, whereas folate supplementation has a promoting effect on the progression of established neoplasms. In contrast, folate deficiency in normal epithelial tissues appears to predispose them to neoplastic transformation, and modest levels of folate supplementation suppress the development of tumors in normal tissues. Notwithstanding the limitations associated with animal models, these studies suggest that the optimal timing and dose of folate intervention must be established for safe and effective chemoprevention in humans. Folate is an important factor in DNA synthesis, stability, and integrity, the repair aberrations of which have been implicated in colorectal carcinogenesis. Folate may also modulate DNA methylation, which is an important epigenetic determinant in gene expression (an inverse relationship), in the maintenance of DNA integrity and stability, in chromosomal modifications, and in the development of mutations. A mechanistic understanding of how folate status modulates colorectal carcinogenesis further strengthens the case for a causal relationship and provides insight into a possible chemopreventive role of folate. Environ. Mol. Mutagen. 44:10,25, 2004. © 2004 Wiley-Liss, Inc. [source] DNA methylation controls Foxp3 gene expressionEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2008Julia Abstract Compelling evidence suggests that Foxp3-expressing CD25+CD4+ regulatory T cells (Treg) are generated within the thymus as a separate lineage. However, Foxp3+CD4+ Treg can also be generated de novo in a TGF-,-dependent process from naive T cells by TCR triggering. Recently, we have shown that naturally occurring, but not in vitro TGF-,-induced Foxp3+ Treg display stable Foxp3 expression that was associated with selective demethylation of an evolutionarily conserved element within the Foxp3 locus named TSDR (Treg-specific demethylated region). Here, we report that inhibition of DNA methylation by azacytidine, even in absence of exogenous TGF-,, not only promoted de novo induction of Foxp3 expression during priming, but also conferred stability of Foxp3 expression upon restimulation. Most notably, such stable Foxp3 expression was found only for cells displaying enhanced TSDR demethylation. In contrast, in vitro TSDR methylation diminished its transcriptional activity. Foxp3+ Treg generated in vivo by DEC-205-mediated targeting of agonist ligands to dendritic cells showed long-term survival in the absence of the inducing antigen and exhibited efficient TSDR demethylation. Together, our data suggest that TSDR is an important methylation-sensitive element regulating Foxp3 expression and demonstrate that epigenetic imprinting in this region is critical for establishment of a stable Treg lineage. Supporting Information for this article is available at www.wiley-vch.de/contents/jc_2040/2008/38105_s.pdf [source] Defective DNA methylation and CD70 overexpression in CD4+ T cells in MRL/lpr lupus-prone miceEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2007Abstract We have determined that abnormal DNA methylation in T cells coincides with the development of autoimmunity, using a mouse model that exhibits an age-dependent lupus-like disease (MRL/lpr mice). Splenic CD4+ T cells were isolated from these mice at 5 and 16,wk of age (before and after autoimmunity is established) and the expression of DNA methyltransferase,1 (Dnmt1) and the methylation-sensitive gene Tnfsf7 (CD70) was measured. Bisulfite DNA sequencing was used to monitor the methylation status of the Tnfsf7 gene. We found that Dnmt1 steady-state mRNA levels were significantly lower in 16-wk-old MRL/lpr mice, which had established autoimmunity, compared to the 5-wk-old MRL/lpr mice. Furthermore, the expression of CD70 was higher in MRL/lpr mice at 16,wk. CD70 was overexpressed in MRL/lpr mice compared to age- and sex-matched MRL+/+ controls. Bisulfite DNA sequencing of the Tnfsf7 gene in MRL/lpr mice revealed that at 16,wk, CG pairs were hypomethylated compared to 5-wk-old mice, and that Tnfsf7 from MRL/lpr mice was hypomethylated at 16,wk relative to age-matched MRL+/+ controls. Our data indicate that decreased expression of Dnmt1 and the corresponding T cell DNA hypomethylation correlate with the development of age-dependent autoimmunity in MRL/lpr mice. [source] Evidence for local control of gene expression in the epidermal differentiation complex,EXPERIMENTAL DERMATOLOGY, Issue 5 2002James T. Elder Abstract: The epidermal differentiation complex (EDC), located on chromosomal band 1q21, consists of at least 43 genes that are expressed during keratinocyte differentiation. Indicative of a role for chromatin structure in tissue specificity of EDC gene expression, we identified an inverse correlation between expression and DNA methylation for two EDC genes (S100A2 and S00A6) in human keratinocytes and fibroblasts. 5-azacytidine (5AC) and sodium butyrate (NaB) are two agents known to promote ,open' chromatin structure. To explore the relationship between chromatin structure and keratinocyte differentiation, we treated normal human keratinocytes (NHK) with 5AC or NaB, or with protocols known to promote their terminal differentiation. We then measured the steady-state mRNA levels for several S100 genes, small proline rich region-1, -2, and -3, loricrin, and involucrin by Northern blotting. 5AC and NaB each markedly increased expression of SPRR1/2 and involucrin in NHK. In contrast, expression of S100A2 was reduced by both agents, and by induction of keratinocyte differentiation. Moreover, while the clustered EDC genes displayed a general tendency to be expressed in epithelial cells, they displayed different patterns of cell type-specific expression. These results indicate that local, gene-specific factors play an important role in the regulation of EDC gene expression in the keratinocyte lineage and during keratinocyte terminal differentiation. [source] Loss of sense transgene-induced post-transcriptional gene silencing by sequential introduction of the same transgene sequences in tobaccoFEBS JOURNAL, Issue 7 2010Sayaka Hirai RNA silencing is an epigenetic inhibition of gene expression and is guided by small interfering RNAs. Sense transgene-induced post-transcriptional gene silencing (S-PTGS) occurs in a portion of a transgenic plant population. When a sense transgene encoding a tobacco endoplasmic reticulum ,-3 fatty acid desaturase (NtFAD3) was introduced into tobacco plants, an S-PTGS line, S44, was obtained. Introduction of another copy of the NtFAD3 transgene into S44 plants caused a phenotypic change from S-PTGS to overexpression. Because this change was associated with the methylation of the promoter sequences of the transgene, reduced transcriptional activity may abolish S-PTGS and residual transcription of the sense transgene may account for the overexpression. To clarify whether RNA-directed DNA methylation (RdDM) can repress the transcriptional activity of the S44 transgene locus, we introduced several RdDM constructs targeting the transgene promoter. An RdDM construct harboring a 200-bp-long fragment of promoter sequences efficiently abrogated the generation of NtFAD3 small interfering RNAs in S44 plants. Transcription of the transgene was partially repressed, but the resulting NtFAD3 mRNAs successfully accumulated and an overexpressed phenotype was established. Our results indicate an example in which overexpression of the transgene is established by complex epigenetic interactions among the transgenic loci. [source] Mouse RS21-C6 is a mammalian 2,-deoxycytidine 5,-triphosphate pyrophosphohydrolase that prefers 5-iodocytosineFEBS JOURNAL, Issue 6 2009Mari Nonaka Free nucleotides in living cells play important roles in a variety of biological reactions, and often undergo chemical modifications of their base moieties. As modified nucleotides may have deleterious effects on cells, they must be eliminated from intracellular nucleotide pools. We have performed a screen for ITP-binding proteins because ITP is a deaminated product of ATP, the most abundant nucleotide, and identified RS21-C6 protein, which bound not only ITP but also ATP. Purified, recombinant RS21-C6 hydrolyzed several canonical nucleoside triphosphates to the corresponding nucleoside monophosphates. The pyrophosphohydrolase activity of RS21-C6 showed a preference for deoxynucleoside triphosphates and cytosine bases. The kcat/Km (s,1·m,1) values were 3.11 × 104, 4.49 × 103 and 1.87 × 103 for dCTP, dATP and dTTP, respectively, and RS21-C6 did not hydrolyze dGTP. Of the base-modified nucleotides analyzed, 5-I-dCTP showed an eightfold higher kcat/Km value compared with that of its corresponding unmodified nucleotide, dCTP. RS21-C6 is expressed in both proliferating and non-proliferating cells, and is localized to the cytoplasm. These results show that RS21-C6 produces dCMP, an upstream precursor for the de novo synthesis of dTTP, by hydrolyzing canonical dCTP. Moreover, RS21-C6 may also prevent inappropriate DNA methylation, DNA replication blocking or mutagenesis by hydrolyzing modified dCTP. [source] Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cellsGENES TO CELLS, Issue 4 2007Satoru Kobayakawa Changes in nuclear organization and the epigenetic state of the genome are important driving forces for developmental gene expression. However, a strategy that allows simultaneous visualization of the dynamics of the epigenomic state and nuclear structure has been lacking to date. We established an experimental system to observe global DNA methylation in living mouse embryonic stem (ES) cells. The methylated DNA binding domain (MBD) and the nuclear localization signal (nls) sequence coding for human methyl CpG-binding domain protein 1 (MBD1) were fused to the enhanced green fluorescent protein (EGFP) reporter gene, and ES cell lines carrying the construct (EGFP-MBD-nls) were established. The EGFP-MBD-nls protein was used to follow DNA methylation in situ under physiological conditions. We also monitored the formation and rearrangement of methylated heterochromatin using EGFP-MBD-nls. Pluripotent mouse ES cells showed unique nuclear organization in that methylated centromeric heterochromatin coalesced to form large clusters around the nucleoli. Upon differentiation, the organization of these heterochromatin clusters changed dramatically. Time-lapse microscopy successfully captured a moment of dramatic change in chromosome positioning during the transition between two differentiation stages. Thus, this experimental system should facilitate studies focusing on relationships between nuclear organization, epigenetic status and cell differentiation. [source] Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cellsGENES TO CELLS, Issue 1 2007Kohta Ikegami In the mammalian genome, numerous CpG-rich loci define tissue-dependent and differentially methylated regions (T-DMRs). Euchromatin from different cell types differs in terms of its tissue-specific DNA methylation profile as defined by these T-DMRs. G9a is a euchromatin-localized histone methyltransferase (HMT) and catalyzes methylation of histone H3 at lysines 9 and 27 (H3-K9 and -K27). To test whether HMT activity influences euchromatic cytosine methylation, we analyzed the DNA methylation status of approximately 2000 CpG-rich loci, which are predicted in silico, in G9a,/, embryonic stem cells by restriction landmark genomic scanning (RLGS). While the RLGS profile of wild-type cells contained about 1300 spots, 32 new spots indicating DNA demethylation were seen in the profile of G9a,/, cells. Virtual-image RLGS (Vi-RLGS) allowed us to identify the genomic source of ten of these spots. These were confirmed to be cytosine demethylated, not just at the Not I site detected by the RLGS but extending over several kilobase pairs in cis. Chromatin immunoprecipitation (ChIP) confirmed these loci to be targets of G9a, with decreased H3-K9 and/or -K27 dimethylation in the G9a,/, cells. These data indicate that G9a site-selectively contributes to DNA methylation. [source] DNA methylation of Sleeping Beauty with transposition into the mouse genomeGENES TO CELLS, Issue 8 2005Chang Won Park The Sleeping Beauty transposon is a recently developed non-viral vector that can mediate insertion of transgenes into the mammalian genome. Foreign DNA elements that are introduced tend to invoke a host-defense mechanism resulting in epigenetic changes, such as DNA methylation, which may induce transcriptional inactivation of mammalian genes. To assess potential epigenetic modifications associated with Sleeping Beauty transposition, we investigated the DNA methylation pattern of transgenes inserted into the mouse genome as well as genomic regions flanking the insertion sites with bisulfite-mediated genomic sequencing. Transgenic mouse lines were created with two different Sleeping Beauty transposons carrying either the Agouti or eGFP transgene. Our results showed that DNA methylation in the keratin-14 promoter and Agouti transgene were negligible. In addition, two different genomic loci flanking the Agouti insertion site exhibited patterns of DNA methylation similar to wild-type mice. In contrast, high levels of DNA methylation were observed in the eGFP transgene and its ROSA26 promoter. These results indicate that transposition via Sleeping Beauty into the mouse genome may result in a significant level of de novo DNA methylation. This may depend on a number of different factors including the cargo DNA sequence, chromosomal context of the insertion site, and/or host genetic background. [source] PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNAGENES TO CELLS, Issue 10 2002Tetsuo Iida Background: Proliferating cell nuclear antigen (PCNA) is a ring-shaped protein known as a processivity factor of DNA polymerase ,. In addition to this role, PCNA interacts with a number of other proteins to increase their local concentration at replicated DNA sites. DNA cytosine methyltransferase 1 (Dnmt1), which preserves epigenetic signals by completing the methylation of hemimethylated DNA after DNA replication, has been indicated as one of these PCNA binding proteins by a previous work. However, the molecular mechanisms and functional significance of their association have not yet been studied. Results: Dnmt1 can be readily isolated from nuclear extracts by PCNA affinity chromatography. Studies of the interactions between the two proteins demonstrate that the N-terminal region of Dnmt1, which contains a typical PCNA binding motif, has core PCNA binding activity, and that the remaining portion of the protein exerts a negative influence on the interaction of Dnmt1 with PCNA. The affinity of Dnmt1 for DNA is much higher for DNA bound by PCNA than for free DNA. Furthermore, DNA methylation assays with hemimethylated DNA as a substrate revealed that PCNA clamp-bound DNA is methylated more efficiently by Dnmt1 than is free DNA. Conclusion: These results provide the first biochemical evidence that physical interactions between PCNA and Dnmt1 facilitate the methylation of newly neplicated DNA, on which PCNA remains associated as a functional clamp. [source] MIDA1 is a sequence specific DNA binding protein with novel DNA binding propertiesGENES TO CELLS, Issue 9 2000Toshiaki Inoue Background Id proteins not only regulate cell differentiation negatively, but they also promote growth and apoptosis. To know the mechanism of how Id regulates cell fate, we previously isolated an Id-associating protein, MIDA1, which positively regulates cell growth. Its predicted amino acid sequence contains tryptophan-mediated repeats (Tryp-med repeats) similar to the DNA binding region of the c-Myb oncoprotein. We determined whether MIDA1 can bind to DNA in a sequence specific manner by PCR-assisted binding site selection. Results We identified a 7-base sequence (GTCAAGC) surrounded by a 1,3 bp palindromic sequence as the DNA sequence recognized by the Tryp-med repeats of MIDA1. This motif is located within the 5,-flanking sequence of several growth regulating genes. Gel shift assays revealed that this sequence and a certain length of flanking DNA are necessary for MIDA1 to bind DNA in a stable manner. Methylation interference and DNase I footprint analysis suggested that the DNA binding of MIDA1 is resistant to DNA methylation and that MIDA1 does not specifically localize on this particular motif. Conclusions We concluded that MIDA1 is a novel sequence-specific DNA binding protein with some different properties from the usual transcription factors and that MIDA1 may act as a mediator of Id-mediated growth-promoting function through its DNA binding activity. [source] Aberrant methylation impairs low density lipoprotein receptor-related protein 1B tumor suppressor function in gastric cancerGENES, CHROMOSOMES AND CANCER, Issue 5 2010Yen-Jung Lu DNA methylation plays a significant role in tumor progression. In this study, we used CpG microarray and differential methylation hybridization approaches to identify low density lipoprotein receptor-related protein 1B (LRP1B) as a novel epigenetic target in gastric cancer. LRP1B was hypermethylated in four gastric cancer cell lines, and low LRP1B mRNA expression was associated with high methylation levels in gastric cancer cell lines. Addition of a DNA methylation inhibitor (5-Aza-dC) restored the mRNA expression of LRP1B in these cell lines, indicating that DNA methylation is involved in regulating LRP1B expression. In 45 out of 74 (61%) clinical samples, LRP1B was highly methylated; LRP1B mRNA expression was significantly lower in 15 out of 19 (79%, P < 0.001) gastric tumor tissues than in corresponding adjacent normal tissues. In addition, ectopic expression of mLRP1B4 in gastric cancer cell lines suppressed cell growth, colony formation and tumor formation in nude mice. These results collectively indicate that LRP1B is a functional tumor suppressor gene in gastric cancer and that is regulated by DNA methylation. © 2010 Wiley-Liss,Inc. [source] Oncogenetic tree model of somatic mutations and DNA methylation in colon tumorsGENES, CHROMOSOMES AND CANCER, Issue 1 2009Carol Sweeney Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis. © 2008 Wiley-Liss, Inc. [source] Promoter analysis of epigenetically controlled genes in bladder cancerGENES, CHROMOSOMES AND CANCER, Issue 5 2008Srinivas Veerla DNA methylation is an important epigenetic modification that regulates several genes crucial for tumor development. To identify epigenetically regulated genes in bladder cancer, we performed genome wide expression analyses of eight-bladder cancer cell lines treated with the demethylating agents 5-aza-2,-cytidine and zebularine. To identify methylated C-residues, we sequenced cloned DNA fragments from bisulfite-treated genomic DNA. We identified a total of 1092 genes that showed ,2-fold altered expression in at least one cell line; 710 showed up-regulation and 382 down-regulation. Extensive sequencing of promoters from 25 genes in eight cell lines showed an association between methylation pattern and expression in 13 genes, including both CpG island and non-CpG island genes. Overall, the methylation patterns showed a patchy appearance with short segments showing high level of methylation separated by larger segments with no methylation. This pattern was not associated with MeCP2 binding sites or with evolutionarily conserved sequences. The genes UBXD2, AQP11, and TIMP1 showed particular patchy methylation patterns. We found several high-scoring and evolutionarily conserved transcription factor binding sites affected by methylated C residues. Two of the genes, FGF18 and MMP11, that were down-regulated as response to 5-aza-2,-cytidine and zebularine treatment showed methylation at specific sites in the untreated cells indicating an activating result of methylation. Apart from identifying epigenetically regulated genes, including TGFBR1, NUPR1, FGF18, TIMP1, and MMP11, that may be of importance for bladder cancer development the presented data also highlight the organization of the modified segments in methylated promoters. This article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/1045-2257/suppmat. © 2008 Wiley-Liss, Inc. [source] Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignanciesGENES, CHROMOSOMES AND CANCER, Issue 9 2007Tino Schenk The preferentially expressed antigen of melanoma (PRAME) is expressed at high levels in large fractions of human malignancies, e.g., acute myeloid leukemia. Therefore, PRAME is an important marker for diagnosis of various malignant diseases and a relevant parameter for monitoring minimal residual disease. It is supposed to be involved in tumorigenic processes. Because of these important aspects we investigated its transcriptional regulation in detail. Most relevant was a detailed DNA methylation analysis of the PRAME 5, region by genomic sequencing in correlation with PRAME expression in various human patient samples and cell lines. In combination with DNA-truncation/transfection experiments with respect to DNA methylation, we show that changes in the methylation pattern in defined parts of the regulatory regions of PRAME are sufficient for its upregulation in cells usually not expressing the gene. © 2007 Wiley-Liss, Inc. [source] Differential involvement of the hypermethylator phenotype in hereditary and sporadic colorectal cancers with high-frequency microsatellite instabilityGENES, CHROMOSOMES AND CANCER, Issue 3 2002Hiroyuki Yamamoto High-frequency microsatellite instability (MSI-H) due to defective DNA mismatch repair occurs in the majority of hereditary nonpolyposis colorectal cancers (HNPCCs) and in a subset of sporadic malignant tumors. Clinicopathologic and genotypic features of MSI-H colorectal tumors in HNPCC patients and those in sporadic cases are very similar but not identical. Correlation between the MSI phenotype and aberrant DNA methylation has been highlighted recently. A strong association between MSI and CpG island methylation has been well characterized in sporadic colorectal cancers with MSI-H but not in those of hereditary origin. To address the issue, we analyzed hereditary and sporadic colorectal cancers for aberrant DNA methylation of target genes using methylation-specific polymerase chain reaction. DNA methylation of the MLH1, CDKN2A, MGMT, THBS1, RARB, APC, and p14ARF genes was found in 0%, 23%, 10%, 3%, 73%, 53%, and 33% of 30 MSI-H cancers in HNPCC patients and in 80%, 55%, 23%, 23%, 58%, 35%, and 50% of 40 sporadic colorectal cancers with MSI-H, respectively. Cases showing methylation at three or more loci of six genes other than MLH1 were defined as CpG island methylator phenotype,positive (CIMP+), and 23% of HNPCC tumors and 53% of sporadic cancers with MSI-H were CIMP+ (P = 0.018). Differences in the extent of CpG island methylation, coupled with the differential involvement of several genes by methylation, in HNPCC tumors and sporadic MSI-H colorectal cancers may be associated with diverging developmental pathways in hereditary and sporadic cancers despite similar MSI-H phenotypes. © 2002 Wiley-Liss, Inc. [source] Maternal methyl supplements increase offspring DNA methylation at Axin fused,GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 9 2006Robert A. Waterland Abstract Transient environmental exposures during mammalian development can permanently alter gene expression and metabolism by influencing the establishment of epigenetic gene regulatory mechanisms. The genomic characteristics that confer such epigenetic plasticity upon specific loci, however, have not been characterized. Methyl donor supplementation of female mice before and during pregnancy permanently increases DNA methylation at the viable yellow agouti (Avy) metastable epiallele in the offspring. The current study tested whether another murine metastable epiallele, axin fused (AxinFu), similarly exhibits epigenetic plasticity to maternal diet. We found that methyl donor supplementation of female mice before and during pregnancy increased DNA methylation at AxinFu and thereby reduced by half the incidence of tail kinking in AxinFu/+ offspring. The hypermethylation was tail-specific, suggesting a mid-gestation effect. Our results indicate that stochastic establishment of epigenotype at metastable epialleles is, in general, labile to methyl donor nutrition, and such influences are not limited to early embryonic development. genesis 44:401,406, 2006. Published 2006 Wiley-Liss, Inc. [source] Cloning and sequence analysis of a zebrafish cDNA encoding DNA (cytosine-5)-methyltransferase-1GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 4 2001Aizeddin A. Mhanni Abstract Summary: The zebrafish has become a well-established animal model for the analysis of development and of several disease phenotypes. Several of the favorable traits that make it a popular model organism would also be beneficial for the study of normal and abnormal vertebrate development in which DNA methylation may play a role. We report the determination of the full-length cDNA sequence corresponding to the zebrafish DNA (cytosine-5-) methyltransferase gene, Dnmt1. It is 4,907 bases long and has an open reading frame predicted to encode a 1,499 amino acid protein that is similar in size and sequence to a number of other methyltransferases identified in other organisms. genesis 30:213,219, 2001. © 2001 Wiley-Liss, Inc. [source] DNA methylation variation in cloned miceGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2001Jun Ohgane Abstract Summary: Mammalian cloning has been accomplished in several mammalian species by nuclear transfer. However, the production rate of cloned animals is quite low, and many cloned offspring die or show abnormal symptoms. A possible cause of the low success rate of cloning and abnormal symptoms in many cloned animals is the incomplete reestablishment of DNA methylation after nuclear transfer. We first analyzed tissue-specific methylation patterns in the placenta, skin, and kidney of normal B6D2F1 mice. There were seven spots/CpG islands (0.5% of the total CpG islands detected) methylated differently in the three different tissues examined. In the placenta and skin of two cloned fetuses, a total of four CpG islands were aberrantly methylated or unmethylated. Interestingly, three of these four loci corresponded to the tissue-specific loci in the normal control fetuses. The extent of aberrant methylation of genomic DNA varied between the cloned animals. In cloned animals, aberrant methylation occurred mainly at tissue-specific methylated loci. Individual cloned animals have different methylation aberrations. In other words, cloned animals are by no means perfect copies of the original animals as far as the methylation status of genomic DNA is concerned. genesis 30:45,50, 2001. © 2001 Wiley-Liss, Inc. [source] Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomasHEPATOLOGY RESEARCH, Issue 11 2007Yutaka Kondo Aim:, The aim of the present study was to examine DNA methylation and histone modification changes in hepatocellular carcinomas (HCC). Methods:, DNA methylation in the P16, RASSF1a, progesterone receptor (PGR) and estrogen receptor , (ER,) promoters was determined by quantitative bisulfite-pyrosequencing technique in HCC patients. Histone H3-lysine (K) 4, H3-K9 and H3-K27 modifications in all these four genes were examined by chromatin immunoprecipitation (ChIP) assay in HCC cell lines. Expression of two DNA methyltransferases (DNMT1 and DNMT3b) and three histone methyltransferases (SUV39H1, G9a and EZH2) in HCC patients was measured by real-time polymerase chain reaction. Results:, Aberrant DNA methylation was detected in all the HCC. Patients with DNA methylation in the RASSF1a, PGR andER, promoters in cancers also had substantial DNA methylation in their non-cancerous liver tissues, whereas DNA methylation in the P16 promoter was cancer specific. Epigenetic states in HCC cell lines showed that silencing of P16 and RASSF1a depended on DNA methylation and histone H3-K9 methylation. However, silencing of the PGR and ER, genes was more closely related to H3-K27 methylation rather than DNA methylation. Consistent with the alteration of histone status, higher expression of G9a and EZH2 was found in HCC than in non-cancerous liver tissues (P < 0.01). Conclusion:, These data suggest that multiple epigenetic silencing mechanisms are inappropriately active in HCC cells. [source] Epidemiology and carcinogenesis of hepatocellular carcinomaHPB, Issue 1 2005TRISHE Y.-M. Abstract The incidence of hepatocellular carcinoma (HCC) shows marked variation worldwide but the magnitude of this tumor is reflected by the occurrence of at least 1 million new cases annually and the uniformly dismal outlook with median survivals of <25 months after resection and <6 months with symptomatic treatment. The strikingly uneven distribution of this tumor parallels the prevalence of hepatitis B infection with rising incidence in western countries attributed to hepatitis C infection. Chronic hepatitis and cirrhosis constitute the major preneoplastic conditions in the majority of HCCs and may be related to other etiologic agents such as environmental chemical carcinogens including nitrites, hydrocarbons, solvents, organochlorine pesticides, and the chemicals in processed foods, cleaning agents, cosmetics and pharmaceuticals, as well as plant toxins such as aflatoxins produced by fungi that cause spoilage of grain and food in the tropics. Genetic diseases such as genetic hematochromatosis, Wilson's disease, ,-1-antitrypsin deficiency, and the inborn errors of metabolism including hereditary tyrosinemia and hepatic porphyria, are known to be associated with HCC. Numerous genetic alterations and the modulation of DNA methylation are recognized in HCC and it is likely that these genetic and epigenetic changes combine with factors involved in chronic hepatocyte destruction and regeneration to result in neoplastic growth and multiple molecular pathways may be involved in the production of subsets of hepatocellular tumors. [source] Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease,HUMAN MUTATION, Issue 6 2010Gerassimos E. Voutsinas Abstract Genetic alterations in the alpha-synuclein (SNCA) gene have been implicated in Parkinson Disease (PD), including point mutations, gene multiplications, and sequence variations within the promoter. Such alterations may be involved in pathology through structural changes or overexpression of the protein leading to protein aggregation, as well as through impaired gene expression. It is, therefore, of importance to specify the parameters that regulate SNCA expression in its normal and mutated state. We studied the expression of SNCA alleles in a lymphoblastoid cell line and in the blood cells of a patient heterozygous for p.Ala53Thr, the first mutation to be implicated in PD pathogenesis. Here, we provide evidence that: (1) SNCA shows monoallelic expression in this patient, (2) epigenetic silencing of the mutated allele involves histone modifications but not DNA methylation, and (3) steady-state mRNA levels deriving from the normal SNCA allele in this patient exceed those of the two normal SNCA alleles combined, in matching, control individuals. An imbalanced SNCA expression in this patient is thus documented, with silencing of the p.Ala53Thr allele and upregulation of the wild-type-allele. This phenomenon is demonstrated for a first time in the SNCA gene, and may have important implications for PD pathogenesis. Hum Mutat 31:1,7, 2010. © 2010 Wiley-Liss, Inc. [source] |