DNA Metabolism (dna + metabolism)

Distribution by Scientific Domains


Selected Abstracts


Conjugative DNA metabolism in Gram-negative bacteria

FEMS MICROBIOLOGY REVIEWS, Issue 1 2010
Fernando De La Cruz
Abstract Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process. [source]


Genome dynamics in major bacterial pathogens

FEMS MICROBIOLOGY REVIEWS, Issue 3 2009
Ole Herman Ambur
Abstract Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention. [source]


The mosquito ribonucleotide reductase R2 gene: ultraviolet light induces expression of a novel R2 variant with an internal amino acid deletion

INSECT MOLECULAR BIOLOGY, Issue 3 2004
G. Jayachandran
Abstract Using RT-PCR, we examined expression of the ribonucleotide reductase R2 subunit (RNR-R2) in Aedes albopictus mosquito cells after treatment with ultraviolet light (UV). In control cells, a predominant band at 1.2 kb corresponded to the full-length cDNA. A smaller 650 bp band was unique to UV-treated cells. Sequence analysis showed that the 650 bp band encoded a protein with an internal deletion of 179 amino acids, relative to Ae. albopictus RNR-R2. The N-terminal twenty amino acids were identical between AalRNR-R2 and Aal,R2; downstream of the deletion, the proteins differed at only four residues. In Aal,R2, the internal deletion spanned five residues critical to RNR-R2 enzymatic activity, including a key tyrosine residue that generates an essential free radical. The full-length 46 kDa and truncated 25 kDa RNR-R2 proteins were shown to be expressed on Western blots, and to differ in their subcellular localization. Similarly, expression of the two proteins was differentially regulated during the cell cycle, and expression of Aal,R2 predominated after UV treatment. Aal,R2 resembled a human RNR-R2 variant called p53R2, which was induced by agents that damage DNA. As was the case with p53R2 and its antisense RNA, levels of Aal,R2 were diminished after treatment of mosquito cells with RNAi corresponding to p53 from Drosophila melanogaster. Examination of the AalRNR-R2 homologue in the Anopheles gambiae genome suggested that Aal,R2 resulted from precise splicing between Exons 1, 4 and 5, eliminating Exons 2 and 3. The likelihood that Aal,R2 is a non-enzymatic, functional participant in DNA metabolism is suggested by enhancement of DNA repair in an in vitro system and by the presence of a similar gene (rnr4) in yeast. [source]


Age-related alterations of gene expression patterns in human CD8+ T cells

AGING CELL, Issue 1 2010
Jia-Ning Cao
Summary Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.2% (754) of the genes analyzed had known functions and displayed statistically significant age-associated expression changes. These genes were involved in a broad array of complex biological processes, mainly in nucleic acid and protein metabolism. Functional groups, in which down-regulated genes were overrepresented, were the following: RNA transcription regulation, RNA and DNA metabolism, intracellular (Golgi, endoplasmic reticulum and nuclear) transportation, signaling transduction pathways (T-cell receptor, Ras/MAPK, JNK/Stat, PI3/AKT, Wnt, TGF,, insulin-like growth factor and insulin), and the ubiquitin cycle. In contrast, the following functional groups contained more up-regulated genes than expected: response to oxidative stress and cytokines, apoptosis, and the MAPKK signaling cascade. These age-associated gene expression changes may be responsible for impaired DNA replication, RNA transcription, and signal transduction, possibly resulting in instability of cellular and genomic integrity, and alterations of growth, differentiation, apoptosis and anergy in human aged CD8+ T cells. [source]


Overexpression, purification and crystallization of a thermostable DNA ligase from the archaeon Thermococcus sp.

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2009

DNA ligases catalyze the sealing of 5,-phosphate and 3,-hydroxyl termini at single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome in DNA metabolism. An ATP-dependent DNA ligase from the archaeon Thermococcus sp. 1519 was overexpressed, purified and crystallized. Crystals were obtained using the hanging-drop vapour-diffusion method employing 35%(v/v) Tacsimate pH 7.0 as a precipitant and diffracted X-rays to 3.09,Å resolution. They belonged to space group P41212, with unit-cell parameters a = b = 79.7, c = 182.6,Å. [source]