Home About us Contact | |||
DNA Immunization (dna + immunization)
Selected AbstractsHepatitis B virus precore protein augments genetic immunizations of the truncated hepatitis C virus core in BALB/c mice,HEPATOLOGY, Issue 1 2008Guoyang Liao DNA immunization has been used to induce either humoral or cellular immune responses against many antigens, including hepatitis C virus (HCV). In addition, DNA immunizations can be enhanced or modulated at the nucleotide level. Genetic immunizations were examined in BALB/c mice through the use of plasmids and chimeric DNA constructs encoding HCV core proteins and hepatitis B virus (HBV) precore (preC) regions. Plasmids encoding the truncated HCV core induced potent humoral and cellular responses to HCV; pcDNA3.0A-C154 produced a stronger antibody response than pcDNA3.0A-C191 (P < 0.01) and pcDNA3.0A-C69 (P < 0.05). HBV preC enhanced the humoral and cellular immune responses of BALB/c mice to HCV; however, pcDNA3.0A-C69preC resulted in a weak cytotoxic T lymphocyte (CTL) response. In addition, the humoral and cellular immune responses to HCV of groups immunized with pcDNA3.0A-C154preC and pcDNA3.0A-C191preC plasmids were higher than those of groups immunized with pcDNA3.0A-C154 and pcDNA3.0A-C191. In vivo CTL responses verified that mice immunized with preC core fused DNAs showed significantly high specific lysis compared with mice immunized with HCV cores only (P < 0.01). In our study, pcDNA3.0A-C154preC led to the highest immune response among all DNA constructs. Conclusion: DNA that encodes truncated HCV core proteins may lead to increased immune responses in vivo, and these responses may be enhanced by HBV preC. (HEPATOLOGY 2007.) [source] Interferon regulatory factor-1 acts as a powerful adjuvant in tat DNA based vaccination,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010Arianna Castaldello Genetic vaccines are safe cost-effective approaches to immunization but DNA immunization is an inefficient process. There is, therefore, a pressing need for adjuvants capable of enhancing the immunogenicity and effectiveness of these vaccines. This is particularly important for diseases for which successful vaccines are still lacking, such as cancer and infectious diseases including HIV-1/AIDS. Here we report an approach to enhance the immunogenicity of DNA vaccines involving the use of transcription factors of the Interferon regulatory factor (IRF) family, specifically IRF-1, IRF-3, and IRF-7 using the tat gene as model antigen. Balb/c mice were immunized by three intramuscular inoculations, using a DNA prime-protein boost protocol, with a DNA encoding tat of HIV-1 and the indicated IRFs and immune responses were compared to those induced by vaccination with tat DNA alone. In vivo administration of plasmid DNA encoding IRF-1, or a mutated version of IRF-1 deleted of the DNA-binding domain, enhanced Tat-specific immune responses and shifted them towards a predominant T helper 1-type immune response with increased IFN-, production and cytotoxic T lymphocytes responses. Conversely, the use of IRF-3 or IRF-7 did not affect the tat -induced responses. These findings define IRF-1 and its mutated form as efficacious T helper 1-inducing adjuvants in the context of tat- based vaccination and also providing a new promising candidate for genetic vaccine development. J. Cell. Physiol. 224: 702,709, 2010. © 2010 Wiley-Liss, Inc. [source] Helicobacter pylori vaccines,the current statusALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 9 2000Sutton In this review, we take a look at the current status in the development of a vaccine against the human pathogenic bacterium, Helicobacter pylori, a major aetiological factor in peptic ulcer disease and gastric adenocarcinoma. Various animal models are now in use from mice infected with H. pylori, through gnotobiotic pigs and primates to ferrets naturally infected with their own Helicobacter, H. mustelae. A significant problem remains the requirement for a suitable mucosal adjuvant. Detoxification or the use of low doses of adjuvants already available may provide a solution and new immune stimulating compounds have been tested with some success. New approaches include the delivery of Helicobacter antigens by DNA immunization, microparticles or live vectors such as attenuated salmonella and the examination of alternative routes of vaccine administration. The phenomenon of post-immunization gastritis and improvements in vaccine efficacy are also discussed. A major area of interest is the mechanism by which immunization actually influences Helicobacter colonization. This remains a mystery: antibodies appear to be unimportant whereas CD4+ T-cells essential. Finally, a viewpoint is given on whom should be immunized when a final vaccine becomes available. [source] Hepatitis B virus precore protein augments genetic immunizations of the truncated hepatitis C virus core in BALB/c mice,HEPATOLOGY, Issue 1 2008Guoyang Liao DNA immunization has been used to induce either humoral or cellular immune responses against many antigens, including hepatitis C virus (HCV). In addition, DNA immunizations can be enhanced or modulated at the nucleotide level. Genetic immunizations were examined in BALB/c mice through the use of plasmids and chimeric DNA constructs encoding HCV core proteins and hepatitis B virus (HBV) precore (preC) regions. Plasmids encoding the truncated HCV core induced potent humoral and cellular responses to HCV; pcDNA3.0A-C154 produced a stronger antibody response than pcDNA3.0A-C191 (P < 0.01) and pcDNA3.0A-C69 (P < 0.05). HBV preC enhanced the humoral and cellular immune responses of BALB/c mice to HCV; however, pcDNA3.0A-C69preC resulted in a weak cytotoxic T lymphocyte (CTL) response. In addition, the humoral and cellular immune responses to HCV of groups immunized with pcDNA3.0A-C154preC and pcDNA3.0A-C191preC plasmids were higher than those of groups immunized with pcDNA3.0A-C154 and pcDNA3.0A-C191. In vivo CTL responses verified that mice immunized with preC core fused DNAs showed significantly high specific lysis compared with mice immunized with HCV cores only (P < 0.01). In our study, pcDNA3.0A-C154preC led to the highest immune response among all DNA constructs. Conclusion: DNA that encodes truncated HCV core proteins may lead to increased immune responses in vivo, and these responses may be enhanced by HBV preC. (HEPATOLOGY 2007.) [source] |