Home About us Contact | |||
DNA Helicase (dna + helicase)
Selected AbstractsAssessing the link between BACH1/FANCJ and MLH1 in DNA crosslink repairENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2010Sharon B. Cantor Abstract FANCJ (also known as BRIP1 or BACH1) is a DNA helicase that was originally identified by its direct interaction with the hereditary breast cancer protein, BRCA1. Similar to BRCA1, FANCJ function is essential for DNA repair and breast cancer suppression. FANCJ is also mutated in the cancer prone syndrome Fanconi anemia, for which patient cells are characterized by extreme sensitivity to agents that generate DNA interstand crosslinks. Unexpectedly, correction of the interstrand crosslink sensitivity of FANCJ-null patient cells did not require the FANCJ/BRCA1 interaction. Instead, FANCJ binding to the mismatch repair protein, MLH1 was required. Given this finding, we address the role of FANCJ and MLH1 in DNA crosslink processing and how their functions could be linked in checkpoint and/or recombination pathways. We speculate that after DNA crosslink processing and repair, the FANCJ/MLH1 interaction is critical for recovery and restart of replication. These ideas are considered and summarized in this review. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] The archaeal Hjm helicase has recQ-like functions, and may be involved in repair of stalled replication forkGENES TO CELLS, Issue 2 2006Ryosuke Fujikane The archaeal Hjm is a structure-specific DNA helicase, which was originally identified in the hyperthermophilic archaeon, Pyrococcus furiosus, by in vitro screening for Holliday junction migration activity. Further biochemical analyses of the Hjm protein from P. furiosus showed that this protein preferably binds to fork-related Y-structured DNAs and unwinds their double-stranded regions in vitro, just like the E. coli RecQ protein. Furthermore, genetic analyses showed that Hjm produced in E. coli cells partially complemented the defect of functions of RecQ in a recQ mutant E. coli strain. These results suggest that Hjm may be a functional counterpart of RecQ in Archaea, in which it is necessary for the maintenance of genome integrity, although the amino acid sequences are not conserved. The functional interaction of Hjm with PCNA for its helicase activity further suggests that the Hjm works at stalled replication forks, as a member of the reconstituted replisomes to restart replication. [source] Stalled replication forks: Making ends meet for recognition and stabilizationBIOESSAYS, Issue 8 2010Hisao Masai Abstract In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA-binding property allows it to recognize and stabilize stalled forks and the structures derived from them. Cells must cope with fork stalls caused by various replication stresses to complete replication of the entire genome. Failure of the stalled fork stabilization process and eventual restart could lead to various forms of genomic instability. The low viability of priA null cells indicates a frequent occurrence of fork stall during normal growth that needs to be properly processed. PriA specifically recognizes the 3,-terminus of the nascent leading strand or the invading strand in a displacement (D)-loop by the three-prime terminus binding pocket (TT-pocket) present in its unique DNA binding domain. Elucidation of the structural basis for recognition of arrested forks by PriA should provide useful insight into how stalled forks are recognized in eukaryotes. [source] Induction of mitotic cell death in cancer cells by small interference RNA suppressing the expression of RecQL1 helicaseCANCER SCIENCE, Issue 1 2008Kazunobu Futami RecQL1 DNA helicase of the human RecQ helicase family participates in DNA repair and recombination pathways during cell-cycle replication. When we examined the effect of RecQL1 suppression on cell growth, we found that RecQL1 silencing by small interference RNA efficiently prevented proliferation of a wide range of cancer cells by inducing mitotic catastrophe and mitotic cell death. In contrast, such mitotic cell death was not seen in the growing normal fibroblasts used as controls, even if RecQL1 expression was fully downregulated. Our results support the hypothesis that endogenous DNA damage that occurs during DNA replication and remains unrepaired in cancer cells due to RecQL1 silencing induces cancer cell-specific mitotic catastrophe through a less-strict checkpoint in cancer cells than in normal cells. We speculate that normal cells are exempt from such mitotic cell death, despite slow growth, because cell-cycle progression is controlled strictly by a strong checkpoint system that detects DNA damage and arrests progression of the cell cycle until DNA damage is repaired completely. These results suggest that RecQL1 helicase is an excellent molecular target for cancer chemotherapy. (Cancer Sci 2008; 99: 71,80) [source] |