Home About us Contact | |||
DNA Biosensor (dna + biosensor)
Selected AbstractsAn Electrochemical DNA Biosensor for the Detection of the Apa I Polymorphism in the Vitamin D Receptor Gene Using Meldola's Blue as a Hybridization IndicatorELECTROANALYSIS, Issue 5 2010Nilay Aladag Abstract Electrochemical detection of nucleic acid base mismatches related to Apa I single nucleotide polymorphism (SNP) in the vitamin D receptor gene was performed successfully using 7-dimethyl-amino-1,2-benzophenoxazinium salt (Meldola's blue, MDB) with 10.9,pmol/100,,L of detection limit. MDB reduction signals obtained from probe, mismatch(probe-SNP containing target) and hybrid(probe-target) modified pencil graphite electrode(PGE) increased respectively. The sensor was able to clearly distinguish perfect match from mismatch DNA in a 30,min. detection time. Several factors affecting on the hybridization and indicator response are studied to maximize sensitivity and selectivity. The advantages of the biosensor are discussed in comparison with previous electrochemical assays for DNA hybridization. [source] Lable-Free Electrochemical DNA Sensor Based on Gold Nanoparticles/Poly(neutral red) Modified ElectrodeELECTROANALYSIS, Issue 6 2010Keying Zhang Abstract We present a new strategy for the label-free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5-end were covalently linked onto the surface of AuNPs/PNR modified electrode via S-Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR-solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one-mismatched and three-mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10,12,M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA-hybridization conditions. [source] 4-Aminothiophenol Self-Assembled Monolayer for the Development of a DNA Biosensor Aiming the Detection of Cylindrospermopsin Producing CyanobacteriaELECTROANALYSIS, Issue 22 2008Elisabete Valério Abstract The development of a DNA biosensor for the detection of cylindrospermopsin, based on self-assembled monolayers (SAMs) of 4-aminothiophenol, is investigated. SAMs were characterized by electrochemical reductive desorption. Detection of probe immobilization and hybridization has been achieved by cyclic and square-wave voltammetry (SWV), using methylene blue (MB) as electroactive indicator. The SWV data obtained in phosphate buffer, with and without NaCl, after MB accumulation, revealed an increase of the redox indicator current peaks after the hybridization step. This behavior is consistent with MB intercalation into DNA, for high ionic strength media and attributed to electrostatic interactions in the absence of salt. Evidence for surface modification is also provided by atomic force microscopy and ellipsometry. [source] Label-Free and Label Based Electrochemical Detection of Hybridization by Using Methylene Blue and Peptide Nucleic Acid Probes at Chitosan Modified Carbon Paste ElectrodesELECTROANALYSIS, Issue 24 2002Pinar Kara Abstract A chitosan modified carbon paste electrode (ChiCPE) based DNA biosensor for the recognition of calf thymus double stranded DNA (dsDNA), single stranded DNA (ssDNA) and hybridization detection between complementary DNA oligonucleotides is presented. DNA and oligonucleotides were electrostatically attached by using chitosan onto CPE. The amino groups of chitosan formed a strong complex with the phosphate backbone of DNA. The immobilized probe could selectively hybridize with the target DNA to form hybrid on the CPE surface. The detection of hybridization was observed by using the label-free and label based protocols. The oxidation signals of guanine and adenine greatly decreased when a hybrid was formed on the ChiCPE surface. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with target. The signals of MB were investigated at dsDNA modified ChiCPE and ssDNA modified ChiCPE and the increased peak currents were observed, in respect to the order of electrodes. The hybridization of peptide nucleic acid (PNA) probes with the DNA target sequences at ChiCPE was also investigated. Performance characteristics of the sensor were described, along with future prospects. [source] Quantum-Dot-Functionalized Poly(styrene- co -acrylic acid) Microbeads: Step-Wise Self-Assembly, Characterization, and Applications for Sub-femtomolar Electrochemical Detection of DNA HybridizationADVANCED FUNCTIONAL MATERIALS, Issue 7 2010Haifeng Dong Abstract A novel nanoparticle label capable of amplifying the electrochemical signal of DNA hybridization is fabricated by functionalizing poly(styrene- co -acrylic acid) microbeads with CdTe quantum dots. CdTe-tagged polybeads are prepared by a layer-by-layer self-assembly of the CdTe quantum dots (diameter,=,3.07,nm) and polyelectrolyte on the polybeads (diameter,=,323,nm). The self-assembly procedure is characterized using scanning and transmission electron microscopy, and X-ray photoelectron, infrared and photoluminescence spectroscopy. The mean quantum-dot coverage is (9.54,±,1.2),×,103 per polybead. The enormous coverage and the unique properties of the quantum dots make the polybeads an effective candidate as a functionalized amplification platform for labelling of DNA or protein. Herein, as an example, the CdTe-tagged polybeads are attached to DNA probes specific to breast cancer by streptavidin,biotin binding to construct a DNA biosensor. The detection of the DNA hybridization process is achieved by the square-wave voltammetry of Cd2+ after the dissolution of the CdTe tags with HNO3. The efficient carrier-bead amplification platform, coupled with the highly sensitive stripping voltammetric measurement, gives rise to a detection limit of 0.52 fmol L,1 and a dynamic range spanning 5 orders of magnitude. This proposed nanoparticle label is promising, exhibits an efficient amplification performance, and opens new opportunities for ultrasensitive detection of other biorecognition events. [source] Biofunctionalization of Vertically Aligned Diamond NanowiresADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Nianjun Yang Abstract Vertically aligned diamond nanowires are biofunctionalized using aminophenyl linker molecules to bond nucleic acid molecules with a well-defined nanometer-sized spacing to the transducer. This novel DNA biosensor combines the outstanding electrochemical properties of diamond as a transducer with the controlled bonding of DNA molecules to the tips of nanowires by use of an electrochemical attachment scheme. Nucleic acid molecules are bonded in this way and dispersed to the transducer, giving rise to optimized hybridization kinetics of DNA. Negatively charged redox mediator molecules (Fe(CN)63,/4,) are applied for DNA-hybridization sensing. Voltammetric detection of DNA hybridization by differential pulse voltammetry is performed with respect to its sensitivity and reproducibility. On a sensor area of 0.03,cm2, a detection limit of 2.0 pM is achieved. As for the chemical stability of the DNA bonding to the diamond nanowires, no degradation over 30 hybridization/denaturation cycles could be detected. By use of this dilute DNA arrangement, single-base mismatch discrimination is achieved. Under the same conditions, smooth diamond modified with phenyl is not suitable for amperometric DNA sensing. [source] Nucleic Acid Biosensor for Detection of Human Immunodeficiency Virus Using Aquabis(1,10-phenanthroline)copper(II) Perchlorate as Electrochemical IndicatorCHINESE JOURNAL OF CHEMISTRY, Issue 1 2008Shu-Yan NIU Abstract The electrochemical behavior of aquabis(1,10-phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10-phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi-reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double-strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single-strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10,9 to 3.1×10,7 mol·L,1 with a linear correlation of ,=0.9987 and a detection limit of 1.3×10,9 mol·L,1. [source] Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme BiosensorsELECTROANALYSIS, Issue 11 2003Eugenii Katz Abstract Impedance spectroscopy is a rapidly developing electrochemical technique for the characterization of biomaterial-functionalized electrodes and biocatalytic transformations at electrode surfaces, and specifically for the transduction of biosensing events at electrodes or field-effect transistor devices. The immobilization of biomaterials, e.g., enzymes, antigens/antibodies or DNA on electrodes or semiconductor surfaces alters the capacitance and interfacial electron transfer resistance of the conductive or semiconductive electrodes. Impedance spectroscopy allows analysis of interfacial changes originating from biorecognition events at electrode surfaces. Kinetics and mechanisms of electron transfer processes corresponding to biocatalytic reactions occurring at modified electrodes can be also derived from Faradaic impedance spectroscopy. Different immunosensors that use impedance measurements for the transduction of antigen-antibody complex formation on electronic transducers were developed. Similarly, DNA biosensors using impedance measurements as readout signals were developed. Amplified detection of the analyte DNA using Faradaic impedance spectroscopy was accomplished by the coupling of functionalized liposomes or by the association of biocatalytic conjugates to the sensing interface providing biocatalyzed precipitation of an insoluble product on the electrodes. The amplified detections of viral DNA and single-base mismatches in DNA were accomplished by similar methods. The changes of interfacial features of gate surfaces of field-effect transistors (FET) upon the formation of antigen-antibody complexes or assembly of protein arrays were probed by impedance measurements and specifically by transconductance measurements. Impedance spectroscopy was also applied to characterize enzyme-based biosensors. The reconstitution of apo-enzymes on cofactor-functionalized electrodes and the formation of cofactor-enzyme affinity complexes on electrodes were probed by Faradaic impedance spectroscopy. Also biocatalyzed reactions occurring on electrode surfaces were analyzed by impedance spectroscopy. The theoretical background of the different methods and their practical applications in analytical procedures were outlined in this article. [source] |