D Orbitals (d + orbital)

Distribution by Scientific Domains


Selected Abstracts


Magneto,Structural Correlations in Discrete MnII -WV Cyano-Bridged Assemblies with Polyimine Ligands

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 26 2010
Robert Podgajny
Abstract We present the magneto,structural correlations for two novel discrete cyano-bridged assemblies based on cationic complexes of manganese(II) with diimine ligands and octacyanotungstate(V) ions. The crystal structure of [MnII(terpy)(dmf)(H2O)2][MnII(terpy)(H2O)(dmf)(,-NC)WV(CN)7]2·6H2O (1) (terpy = 2,2,;6,,2,-terpyridine, dmf = dimethylformamide) contains dinuclear {MnIIWV}, cyano-bridged anions, while the crystal structure of [MnII(phen)3]2[MnII(phen)2(,-NC)2WV(CN)6]2(ClO4)2·9H2O (2) (phen = 1,10-phenanthroline) is built of tetranuclear {MnII2WV2}2, square anions. Intramolecular Mn,W magnetic interactions through the cyano bridges are represented by magnetic coupling constants J = ,39 cm,1 for the {MnIIWV}, unit in 1 and J1 = ,25.7 and J2 = ,16.7 cm,1 for the {MnII2WV2}2, unit in 2. J and J1 represent relatively strong W,CN,Mn interactions and are ascribed to the bridges in b positions of TPRS-8 (trigonal prism square-face bicapped) of [W(CN)8]3, polyhedra, favoring the strongest electronic interactions between the d,d orbital of W and the ,* orbitals of CN,, whereas J2 is related to the m vertex of [W(CN)8]3,. The magnetic properties of 1 and 2 are compared with reference compounds and discussed in the context of the type of coordination polyhedra of [W(CN)8]3, as well as the metric parameters of cyano-bridged W,CN,Mn linkages. We found the type of coordination polyhedra and bridging mode of [W(CN)8]3, to be the most important factors influencing the magnitude of the Mn,W magnetic interaction. [source]


Pyrazolate-Based Dinucleating Ligands in L2M2 Scaffolds: Effects of Bulky Substituents and Coligands on Structures and M···H,C Interactions

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2004
Jens C. Röder
Abstract A series of nickel(II) and palladium(II) complexes [L2M2]2+ have been prepared and structurally characterized, where L is a pyrazolate ligand with bulky 2,6-dimethyl- or 2,6-di(isopropyl)anilinomethyl side arms. Coordinating counter anions such as chloride can bind to axial sites of the dinickel species in a solvent-dependent process, giving rise to five-coordinate high-spin metal ions. In the case of weakly coordinating anions, the metal ions are found in roughly square-planar environments, and the structures are governed by the tendency of the bulky aryl groups to avoid each other, which forces the methyl or isopropyl substituents in the aryl 2- and 6-positions to approach the metal ions from the axial directions. This leads to drastic low-field shifts of the respective 1H NMR signals, e.g. , = 7.86 ppm for the isopropyl ,CH which comes in close proximity to the low-spin nickel(II) center. The relevance of such low-field NMR resonances of protons close to the axial sites of d8 metal ions for possible three-center four-electron M···H,C hydrogen bonds involving the filled d orbital of the metal ion is discussed. In the present case, attractive M···H interactions are assumed to be of no major significance. This was corroborated by the structure of a further [L2Ni2]2+ type complex where the anilinomethyl side arms bear only a single 2-isopropyl group, which was found rotated away from the metal. Additional spectroscopic and electrochemical properties of the various complexes are reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


Structure, Characterization, and Metal-Complexation Properties of a New Tetraazamacrocycle Containing Two Phenolic Pendant Arms

HELVETICA CHIMICA ACTA, Issue 10 2004
Xiuling Cui
The new tetraazamacrocycle 2 (=2,2,-[[7-Methyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene-3,11-diyl]bis(methylene)]bis(4-bromophenol)) was synthesized and used as a ligand for different metal-ion complexes. The X-ray crystal structures of the complexes of the general formula [M(H- 2)]+NO,MeOH (M=Ni2+, Zn2+), in which only one of the two pendant phenolic OH groups of 2 is deprotonated, were determined. In both complexes, the coordination environment is of the [5+1] type, the four N-atoms of the macrocyclic framework defining a square-planar arrangement around the metal center, with similar NiN and ZnN distances of 1.961(9) to 2.157(9),Å and 2.021(9) to 2.284(8),Å, respectively. In contrast, the MO distances are markedly different, 2.060(6) and 2.449(8),Å in the NiII complex, and 2.027(7) and 2.941(9),Å in the ZnII complex. The UV/VIS spectra of the NiII and CuII complexes with ligand 2, and the EPR spectra of the CuII system, suggest the same type of structure for the complexes in solution as in the solid state. Theoretical studies by means of density functional theory (DFT) confirmed the experimental structures of the NiII and ZnII complexes, and led to a proposal of a similar structure for the corresponding CuII complex. The calculated EPR parameters for the latter and comparison with related data support this interpretation. The singly occupied molecular orbital (SOMO) in these systems is mainly made of a d orbital of Cu, with a strong antibonding (,*) contribution of the axially bound phenolate residue. [source]


Demonstration of "Möbius" Aromaticity in Planar Metallacycles

CHEMISTRY - A EUROPEAN JOURNAL, Issue 26 2010
Michael Mauksch Dr.
Abstract Möbius aromaticity, predicted by Edgar Heilbronner in 1964, is a stabilizing effect exhibited by 4,n electron fully conjugated cyclic molecules (or transition states) with an odd number of orbital phase inversions. Although it has previously been suggested that this effect might also apply to planar metallacycles in which a transition metal employs a d orbital in ,-type binding mode, only very few examples of stable twisted molecules composed of main group elements are known. We report herein, the first computationally confirmed 4,n,, aromatic planar metallacyclic examples and their building principles. Aromatic stabilization energy (ASE) of a 8,, metalla-cycloheptatriene [Fe(CH)6H2], with four doubly occupied , orbitals and a HOMA value of +0.80 (cf. benzene=+1.0), an NICS(0) value of ,8.5 (benzene=,9.8, NICS=nucleus independent chemical shift), and with one phase inversion, is +27.5,kcal,mol,1 (about two-thirds of the value for benzene). In contrast, an unknown non-Möbius 1,4-dimetallabenzene [Fe2(CH)4H4], also with 8,, electrons, and without phase inversions, has an ASE of ,4.1,kcal,mol,1 and a NICS(0)=+15.6, indicative of antiaromaticity. Aromaticity of the proposed Möbius aromatic metallacycles is confirmed by using magnetic (NICS(0), NICS(1)zz, ,1H) and geometric (HOMA) aromaticity criteria, planarity, and near equalized CC bond lengths, bonding analysis (Wiberg bond indices, NBO, and NLMO analysis). The role of wave function boundary conditions (periodic vs. antiperiodic) in chemistry is further stressed, being equivalent to Zimmerman's concept of nodal parity for Möbius/Hückel systems. [source]


A New Spherical Metallacryptate Compound [Na{Cu6(Thr)8(H2O)2(ClO4)4}]·ClO4·5,H2O: Magnetic Properties and DFT Calculations

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2005
Sheng-Chang Xiang
Abstract The hexanuclear copper(II) complex with threoninato acid has been synthesized. Its structure can be described as an octahedron cage with D2h symmetry in which six copper ions are bound by eight threoninato acids with a [3.11223130] coordination mode and one Na+ cation being captured within the center of the cage. In contrast with other hexanuclear copper compounds containing amino acids, the title compound has a prolate Cu6 octahedron with the longest axial distance and a rectangle equatorial plane, as well as special coordinated perchlorate ions. Compared with classic cryptate, hexanuclear copper(II) compounds with amino acids can be regarded as a new topologic type of spherical macrotricyclic metallacryptates [2,2,2,2] whose cages have a high selectivity for sodium ions. The analysis of magnetic susceptibility data shows that the threoninato compound has a ground state with spin S = 3. The computing coupling constant between the equatorial Cu centers and the axial ones is 4.4 cm,1,calculated by using DFT methods for a model compound. This is close to three known experimental values of 1.39, 0.56 or 0.43 cm,1 for complexes with 4-hydroxy- L -prolinato, L -prolinato or L -threoninato acid as ligands, respectively. The dominant ferromagnetic interactions for these complexes can be essentially attributed to the orthogonality between the magnetic orbitals, dxz or dyz orbitals for the equatorial CuII centers and d orbitals for the axial ones. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Six-coordinate Co2+ with imidazole, NH3, and H2O ligands: Approaching spin crossover

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2007
Ann M. Schmiedekamp
Abstract Octahedral, six-coordinate Co2+ can exist in two spin states: S = 3/2 and S = 1/2. The difference in energy between high spin (S = 3/2) and low spin (S = 1/2) is dependent on both the ligand mix and coordination stereochemistry. B3LYP calculations on combinations of neutral imidazole, NH3, and H2O ligands show that low-spin isomers are stabilized by axial H2O ligands and in structures that also include trans pairs of equatorial NH3 and protonated imidazole ligands, spin crossover structures are predicted from spin state energy differences. Occupied Co d orbitals from the DFT calculations provide a means of estimating effective ligand strength for homoleptic and mixed ligand combinations. These calculations suggest that in a labile biological system, a spin crossover environment can be created. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


Electronic structures and chemical bonding in diatomic ScX to ZnX (X = S, Se, Te)

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 3 2007
Z. J. Wu
Abstract Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that, besides ionic component, covalent bonds are formed between the metal s, d orbitals, and the p orbital of S, Se, and Te. For neutral and cationic molecules, the covalent character increases from ScX to CrX and from FeX to CuX with an exception of decrease at MnX and ZnX, while for anionic molecules, the trend is not obvious. For both neutral and charged molecules, the sulfides have the shortest bond distance and largest vibrational frequency, while tellurides have the largest bond distance and smallest vibrational frequency. For neutral and anionic molecules, the dissociation energy of sulfides is the largest, that of tellurides is the smallest, while this only remains true for cationic molecules from ScX+ to FeX+. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 703,714, 2007 [source]


Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA-LF,

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2003
Jean-Philip Piquemal
Abstract To account for the distortion of the coordination sphere that takes place in complexes containing open-shell metal cations such as Cu(II), we implemented, in sum of interactions between fragments ab initio computed (SIBFA) molecular mechanics, an additional contribution to take into account the ligand field splitting of the metal d orbitals. This term, based on the angular overlap model, has been parameterized for Cu(II) coordinated to oxygen and nitrogen ligands. The comparison of the results obtained from density functional theory computations on the one hand and SIBFA or SIBFA-LF on the other shows that SIBFA-LF gives geometric arrangements similar to those obtained from quantum mechanical computations. Moreover, the geometric improvement takes place without downgrading the energetic agreement obtained from SIBFA. The systems considered are Cu(II) interacting with six water molecules, four ammonia or four imidazoles, and four water plus two formate anions. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1963,1970, 2003 [source]


Evidence from ESR studies for [Co(,-C2H4)3] produced at 77 K in a rotating cryostat,

MAGNETIC RESONANCE IN CHEMISTRY, Issue 10 2006
Lynda J. Hayton
Abstract Co atoms were reacted with ethene at 77 K and the paramagnetic products studied by electron spin resonance (ESR) at X- and K-bands. The ESR spectra of the major product at both frequencies showed eight cobalt multiplets (ICo = 7/2) indicating a mono-cobalt complex. The spectra have orthorhombic g and cobalt hyperfine tensors and were simulated by the parameters; g1 = 2.284, g2 = 2.0027, g3 = 2.1527; A1 < , 25 MHz, A2 = , 109 MHz, A3 = , 198 MHz. Proton and 13C (1% natural abundance) hyperfine couplings were lower than the line widths (<2 MHz) indicating less than 0.5 spin transfer to the ethene ligands. We assigned the spectrum to a Jahn,Teller-distorted planar trigonal mono-cobalt tris-ethene [Co(,-C2H4)3] complex in C2v symmetry. The SOMO is either a 3dx2,y2 (2a1) orbital in a T-geometry or a 3dxy (b1) orbital in a Y-geometry but there is only a spin density, a2, of 0.30 in these d orbitals. The spin deficiency of 0.70 is attributed to two factors; spin transfer from the Co to ethene ,/,* orbitals and a 4p orbital contribution, b2, to the SOMO. Calculations of a2 and b2 have been made at three levels of spin transfer, ,. At , = 0.00a2 is 0.23 and b2 is 0.78, at , = 0.25a2 is 0.25 and b2 is 0.52 and at , = 0.50a2 is 0.28 and b2 is 0.23. The other possible assignment to a mono-cobalt bis-ethene complex [Co(,-C2H4)2] cannot be discounted from the ESR data alone but is considered unlikely on other grounds. The complex is stable up to ,220 K indicating a barrier to decomposition of ,50 kJ Mol,1 Copyright © 2006 John Wiley & Sons, Ltd. [source]


Spectral Properties of Pro-multimodal Imaging Agents Derived from a NIR Dye and a Metal Chelator

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2005
Zongren Zhang
ABSTRACT Monomolecular multimodal imaging agents (MOMIAs) are able to provide complementary diagnostic information of a target diseased tissue. We developed a convenient solid-phase approach to construct two pro-MOMIAs (before incorporating radiometal) derived from 1,4,7,10-tetraazacy-clododecane-1,4,7,10-tetraacetic acid (DOTA) and cypate, a near-infrared (NIR) fluorescent dye analogous to indocyanine green (ICG). The possible interaction between d orbitals of transition metal DOTA complexes or free metals and the p orbitals of cypate chromophore could quench the fluorescence of pro-MOMIAs. However, we did not observe significant changes in the spectral properties of cypate upon conjugation with DOTA and subsequent chelation with metals. The fluorescence intensity of the chelated and nonmetal-chelated PRO-MOMIAs remained fairly the same in dilute 20% aqueous dimethylsulfoxide (DMSO) solution (1 × 10,6M). Significant reduction in the fluorescence intensity of pro-MOMIAs occurred in the presence of a large excess of metal ions (> 1 molar ratio for indium and 20-fold for a copper relative to pro-MOMIA). This study suggests the feasibility of using MOMIAs for combined optical and radioisotope imaging. [source]