Home About us Contact | |||
D Metabolites (d + metabolite)
Kinds of D Metabolites Selected AbstractsTwo modes of ERK activation by TNF in keratinocytes: Different cellular outcomes and bi-directional modulation by vitamin D,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Ester Ziv Abstract Inflammation, elicited in the skin following tissue damage or pathogen invasion, may become chronic with deleterious consequences. Tumor necrosis factor (TNF) is a key mediator of cutaneous inflammation and the keratinocyte an important protagonist of skin immunity. Calcitriol, the hormonally active vitamin D metabolite, and its analogs attenuate epidermal inflammation and inhibit the hyperproliferation of keratinocytes associated with the inflammatory disorder, psoriasis. Since activation of extracellular signal-regulated kinase (ERK) promotes keratinocyte proliferation and mediates epidermal inflammation, we studied the effect of calcitriol on ERK activation in HaCaT keratinocytes exposed to the ubiquitous inflammatory cytokine TNF. By using the EGF receptor (EGFR) tyrosine kinase inhibitor, AG1487 and the Src family inhibitor, PP-1, we established that TNF activated ERK in an EGFR and Src dependent and an EGFR and Src independent modes. EGFR dependent activation resulted in the upregulation of the transcription factor, c-Fos, while the EGFR independent activation mode was of a shorter duration, did not affect c-Fos expression but induced IL-8 mRNA expression. Pretreatment with calcitriol, enhanced TNF-induced EGFR-Src dependent ERK activation and tyrosine phosphorylation of the EGFR, but abolished the EGFR-Src independent ERK activation. These effects were mirrored by enhancement of c-Fos and inhibition of IL-8 induction by TNF. Treatment with calcitriol increased the rate of the de-phosphorylation of activated ERK, accounting for the inhibition of EGFR-Src independent ERK activation by TNF. It is possible that effects on the ERK cascade contribute to the effects of calcitriol and its synthetic analogs on cutaneous inflammation and keratinocyte proliferation. J. Cell. Biochem. 104: 606,619, 2008. © 2007 Wiley-Liss, Inc. [source] Effects of vegetable feed ingredients on bone health in Atlantic salmonJOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2010P. G. Fjelldal Summary The aim of the present study was to examine if dietary inclusion of vegetable lipids (VL) and proteins (VP) influenced markers of bone health in Atlantic salmon. Triplicate groups were fed one of four different diets; 100% fish protein (FP) and fish lipids (FL) (FPFL), 80% VP and 35% VL (80VP35VL), 40% VP and 70% VL (40VP70VL), or 80% VP and 70% VL (80VP70VL) for 12 months on-growth in sea water. Fish were analyzed for vertebral bone mineralization (mineral content, as % of bone dry weight), vertebral deformities (radiology), vertebral bone mRNA expression of factors involved in mineralization (bone gla protein, bgp) and growth regulation (igf-I and growth hormone receptor), as well as plasma vitamin D metabolites. The fish grew from 0.35 to 4 kg during the experimental period. At the end of the experiment, significantly lower prevalence of fish with one or more deformed vertebrae was observed in the 80VP70VL group (11%) compared to the other groups (33,43%). There was a significant higher relative expression of igf -I mRNA in vertebral bone of fish fed the 80VP70VL diet compared to control fish (FPFL), while the other genes studied were unaffected. Elevated plasma 25-hydroxyvitamin D3 recorded in the marine feed group is discussed as a predictor for later development of bone deformities. In conclusion, the present study shows that high inclusion levels of vegetable lipids and proteins may have a positive effect on bone health in Atlantic salmon postsmolts. [source] Calcium Channel TRPV6 Expression in Human Duodenum: Different Relationships to the Vitamin D System and Aging in Men and Women,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2006FRCP, Julian RF Walters MA Abstract Intestinal absorption of calcium affects bone mineralization and varies greatly. In human duodenum, expression of the calcium channel TRPV6 was directly related to blood 1,25-dihydroxyvitamin D in men, but effects of age with lower median vitamin D receptor levels were more significant in women. Introduction: The TRPV6 calcium channel/transporter is implicated in animal studies of intestinal calcium absorption, but in humans, its role and relationship to differences in mineral metabolism is unclear. We aimed to characterize TRPV6 expression in human intestine including defining relationships to the vitamin D endocrine system. Materials and Methods: TRPV6 transcript expression was determined in endoscopic mucosal biopsies obtained from normal duodenum. Expression was compared with that in ileum and with in situ hybridization in archival tissues and related to sequence variants in genomic DNA. TRPV6 expression was related in 33 subjects to other transcripts involved in calcium absorption including the vitamin D receptor (VDR) and to blood vitamin D metabolites including 1,25-dihydroxyvitamin D [1,25(OH)2D]. Results: TRPV6 transcripts were readily detected in duodenum but not in ileum. Expression was highest in villous epithelial cells. Sequence variants in the coding and upstream regions of the gene did not affect TRPV6 expression. The relationship between duodenal TRPV6 expression and 1,25(OH)2D differed in men and women. In men, linear regression showed a strong association with 1,25(OH)2D (r = 0.87, p < 0.01), which was unaffected by age. In women, there was no significant overall relationship with 1,25(OH)2D, but there was a significant decrease with age (r = ,0.69, p < 0.001). Individual expression of TRPV6 and VDR was significantly correlated. The group of older women (>50) had lower median levels of both TRPV6 and VDR transcripts than younger women (p < 0.001 and 0.02, respectively). Conclusions: Duodenal TRPV6 expression is vitamin D dependent in men, but not in older women, where expression of TRPV6 and VDR are both reduced. These findings can explain, at least in part, the lower fractional calcium absorption seen in older postmenopausal women. [source] Dissociation of growth arrest and CYP24 induction by VDR ligands in mammary tumor cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007Meggan E. Valrance Abstract Murine mammary tumor cells with differential vitamin D receptor (VDR) expression were used to study the mechanisms of growth inhibition by vitamin D steroids. In VDR-expressing WT145 cells, 1,25D and its synthetic analog EB1089 induce growth arrest and transcriptionally upregulate the well-characterized VDR target gene CYP24. 1,25D also induces apoptosis in WT145 cells through activation of initiator and executioner caspases and the calcium-dependent protease calpain. We also demonstrate that WT145 cells express CYP27B1, the enzyme that converts 25-hydroxyvitamin D3 (25D) to 1,25D, and that 25D inhibits growth of these cells but does not trigger apoptosis or induce CYP24 expression. Comparative studies were conducted in KO240 cells, which were derived from VDR knockout mice and found to retain expression of CYP27B1. KO240 cells were not growth inhibited nor rendered apoptotic by any of the tested vitamin D compounds. These data conclusively demonstrate that VDR mediates the anti-proliferative and pro-apoptotic effects of vitamin D metabolites and analogs, but that the potency of a vitamin D compound to induce the VDR target gene CYP24 does not accurately predict its potency in mediating growth regulation. J. Cell. Biochem. 101: 1505,1519, 2007. © 2007 Wiley-Liss, Inc. [source] Analysis of the vitamin D system in cutaneous squamous cell carcinomasJOURNAL OF CUTANEOUS PATHOLOGY, Issue 3 2004Jörg Reichrath Background:, Increasing evidence points at an important function of vitamin D metabolites for growth regulation in various tissues, and new vitamin D analogs are interesting candidates for the treatment of malignancies, including squamous cell carcinomas (SCC). Methods:, We have analyzed expression of vitamin D receptor (VDR), vitamin D-25-hydroxylase (25-OHase), 25-hydroxyvitamin D-1,-hydroxylase (1,-OHase), and 1,25-dihydroxyvitamin D-24-hydroxylase (24-OHase) in SCC. Results:, Intensity of VDR immunoreactivity was increased in SCCs as compared to normal human skin. VDR staining did not correlate with histological type or grading, nor with markers for proliferation, differentiation, or apoptotic cells. Incubation of SCC cell lines (SCL-1, SCL-2) with calcitriol resulted in a dose-dependent suppression of cell proliferation (approximately up to 30%) in vitro, as measured by a tetrazolium salt (WST-1)-based colorimetric assay. RNA levels for VDR, 25-OHase, 1,-OHase, and 24-OHase were significantly elevated in SCCs as compared to HS, as measured by real-time polymerase chain reaction. Conclusions:, Our findings demonstrate that modulation of VDR expression and local synthesis or metabolism of vitamin D metabolites may be of importance for growth regulation of SCCs. Additionally, SCCs represent potential targets for therapy with new vitamin D analogs that exert little calcemic side effects or for pharmacological modulation of calcitriol synthesis/metabolism in these tumors. [source] Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and prostate cancer riskTHE PROSTATE, Issue 9 2007Bahar Mikhak Abstract BACKGROUND The vitamin D receptor (VDR) is required for actions of vitamin D. The binding of 1,25-dihydroxyvitamin D to the VDR on prostatic epithelial cells prompts the regulation of cancer-related genes. METHODS We conducted a nested case-control study in the Health Professionals Follow-up Study to investigate the role of the VDR Cdx2, Fok1, and Bsm1 gene polymorphisms and associated haplotypes and their interaction with plasma vitamin D metabolites in relation to prostate cancer (PC) risk. RESULTS No association was found between these SNPs or their associated haplotypes and all PC subtypes except that haplotype 2 (A-f-b) with Cdx2 A, Fok1 f, and Bsm1 b alleles and haplotype 3 (A-F-B) with Cdx2 A, Fok1 F and Bsm1 B alleles compared to the most common haplotype (A-F-b), were associated with reduced risk of aggressive PC (high stage or Gleason sum ,7; P,=,0.02), both with two alleles suspected of being low risk. Carriers of the variant Cdx2 A allele who were deficient in plasma 25-hydroxyvitamin D (,15 ng/ml) compared to non-carriers with normal 25-hydroxyvitamin D, had a lower risk of total and poorly differentiated PCs (Gleason sum ,7) (P for interaction,=,0.02 and 0.04, respectively). Plasma 1,25-dihydroxyvitamin D deficiency (,26 pg/ml) was associated with a threefold risk of poorly differentiated PC (P for interaction,=,0.01) when comparing carriers of the Cdx2 A allele to non-carriers with normal 1,25-dihydroxyvitamin D. CONCLUSION In this population of men, none of the VDR polymorphisms studied was associated with susceptibility to PC. Prostate 67: 911,923, 2007. © 2007 Wiley-Liss, Inc. [source] |