D. However (d + however)

Distribution by Scientific Domains


Selected Abstracts


Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004
Yukiko Maeda
Abstract Bone formation is under the control of a set of transcription factors. Ids are inhibitory helix-loop-helix (HLH) transcription factors and expression of Id genes in osteoblasts is under the control of calciotropic agents such as BMP and vitamin D. However, the function of Ids during bone formation in vivo has not yet been elucidated. We, therefore, examined the role of Id1 and Id3 in the regulation of bone metabolism in vivo. Using wild type and Id1/Id3 heterozygous knockout mice, we analyzed calvarial bone formation in the suture by X-ray picture, proliferation, and mineralization activities of primary calvarial osteoblasts by MTT assay and alizarin red staining and onthotopic in vivo bone formation by BMP injection onto calvaria and micro CT analysis. The width of calvarial sutures was reduced by more than 50% in Id1/Id3 heterozygous knock out mice. Analyses on the cellular basis for the mechanism underlying the defects in the mutant mice revealed suppression of proliferation and mineralization in osteoblasts derived from Id1/Id3 heterozygous knock out mice. Furthermore, Id1/Id3 heterozygous knock out mice suppressed BMP-induced bone formation in vivo. These results indicated that Id1 and Id3 are positive factors to promote bone formation in vivo. © 2004 Wiley-Liss, Inc. [source]


Effects of two whole blood systems (DALI and Liposorber D) for LDL apheresis on lipids and cardiovascular risk markers in severe hypercholesterolemia

JOURNAL OF CLINICAL APHERESIS, Issue 6 2007
Carsten Otto
Abstract LDL apheresis is an extracorporal modality to lower the concentration of atherogenic lipoproteins, e.g., LDL cholesterol. We compared two recently introduced whole-blood LDL apheresis systems inpatients with hypercholesterolemia in a randomized cross-over trial with respect to their effects on lipoproteins as well as on other cardiovascular risk markers. Six patients (4 women, 2 men, median age 62.5 years, median BMI 25.9 kg/m2) on regular LDL apheresis were randomly assigned to receive six weekly treatments with either DALI (Fresenius) or Liposorber D (Kaneka). After 6 weeks, the patients were switched to the other device (again six weekly treatments). Blood was drawn before and immediately after LDL apheresis at three time points (last regular apheresis before the study; after six treatments with DALI and after six treatments with Liposorber D). LDL cholesterol concentration before the sixth apheresis (DALI 129 mg/dL, Liposorber D 132 mg/dL) as well as LDL cholesterol reduction during the sixth apheresis (DALI 68.3% and Liposorber D 68.4%) were similar with the two systems. CRP and fibrinogen concentrations were lower but interleukin-6, myeloperoxidase, and resistin concentrations were higher after the last Liposorber treatment compared with DALI (P < 0.05, respectively). No differences were observed concerning adiponectin, ghrelin, and PYY levels. In conclusion, both devices were highly effective in eliminating atherogenic lipoproteins. CRP and fibrinogen were better eliminated with Liposorber D. However, following Liposorber D, interleukin-6 levels were higher than after DALI possibly indicating an increased inflammatory activation. J. Clin. Apheresis, 2007. © 2007 Wiley-Liss, Inc. [source]


Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening

THE PLANT JOURNAL, Issue 5 2007
Yuree Lee
Summary Previously, we demonstrated that a protein that binds phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] inhibits both light-induced stomatal opening and ABA-induced stomatal closing. The latter effect is due to a reduction in free PtdIns(4,5)P2, decreasing production of inositol 1,4,5-trisphosphate and phosphatidic acid by phospholipases C and D. However, it is less clear how PtdIns(4,5)P2 modulates stomatal opening. We found that in response to white light irradiation, the PtdIns(4,5)P2 -binding domain GFP:PLC,1PH translocated from the cytosol into the plasma membrane. This suggests that the level of PtdIns(4,5)P2 increases at the plasma membrane upon illumination. Exogenously administered PtdIns(4,5)P2 substituted for light stimuli, inducing stomatal opening and swelling of guard cell protoplasts. To identify PtdIns(4,5)P2 targets we performed patch-clamp experiments, and found that anion channel activity was inhibited by PtdIns(4,5)P2. Genetic analyses using an Arabidopsis PIP5K4 mutant further supported the role of PtdIns(4,5)P2 in stomatal opening. The reduced stomatal opening movements exhibited by a mutant of Arabidopsis PIP5K4 (At3g56960) was countered by exogenous application of PtdIns(4,5)P2. The phenotype of reduced stomatal opening in the pip5k4 mutant was recovered in lines complemented with the full-length PIP5K4. Together, these data suggest that PIP5K4 produces PtdIns(4,5)P2 in irradiated guard cells, inhibiting anion channels to allow full stomatal opening. [source]


Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker

BIOMETRICS, Issue 2 2000
Patrick J. Heagerty
Summary. ROC curves are a popular method for displaying sensitivity and specificity of a continuous marker, X, for a binary disease variable, D. However, many disease outcomes are time dependent, D(t, and ROC curves that vary as a function of time may be mire appropriate. A common examples of a time-dependent variable is vital status, where D(t) = 1 if a patient has died prior to time t and zero otherwise. We propose summarizing the discrimination potential of a marker X, measured at baseline (t= 0), by calculating ROC Curves for cumulative disease or death incidence by time t, which we denote as ROC(t). A typical complexity with survival data is that observations may be censored. Two ROC curve estimators are proposed that can accommodate censored data. A simple estimator is based on using the Kaplan-Meier estimated for each possible subset X > c. However, this estimator does not guarantee the necessary condition that sensitivity and specificity are monotone in X. An alternative estimator that does guarantee monotonicity is based on a nearest neighbor estimator for the bivariate distribution function of (X, T), where T represents survival time (Akritas, M. J., 1994, Annals of Statistics22, 1299,1327). We present an example where ROC(t) is used to compare a standard and a modified flow cytometry measurement for predicting survival after detection of breast cancer and an example where the ROC(t) curve displays the impact of modifying eligibility criteria for sample size and power in HIV prevention trials. [source]


Microbiological and Sensorial Quality Assessment of Ready-to-Cook Seafood Products Packaged under Modified Atmosphere

JOURNAL OF FOOD SCIENCE, Issue 9 2009
B. Speranza
ABSTRACT:, The effects of modified atmosphere packaging (MAP) (30:40:30 O2:CO2:N2 and 5:95 O2:CO2) on the quality of 4 ready-to-cook seafood products were studied. In particular, the investigation was carried out on hake fillets, yellow gurnard fillets, chub mackerel fillets, and entire eviscerated cuttlefish. Quality assessment was based on microbiological and sensorial indices determination. Both packaging gas mixtures contributed to a considerable slowing down of the microbial and sensorial quality loss of the investigated seafood products. Results showed that sensorial quality was the subindex that limited their shelf life. In fact, based primarily on microbiological results, samples under MAP remained acceptable up to the end of storage (that is, 14 d), regardless of fish specie. On the other hand, results from sensory analyses showed that chub mackerel fillets in MAP were acceptable up to the 6th storage d, whilst hake fillets, yellow gurnard fillets, and entire cuttlefish became unacceptable after 10 to 11 d. However, compared to control samples, an increase in the sensorial shelf life of MAP samples (ranging from about 95% to 250%) was always recorded. Practical Application: Modified atmosphere packaging (MAP) is an inexpensive and uncomplicated method of extending shelf life of packed seafood. It could gain great attention from the fish industrial sector due to the fact that MAP is a practical and economic technique, realizable by small technical expedients. Moreover, there is great attention from the food industry and retailers to react to the growing demand for convenience food, thus promoting an increase in the assortments of ready-to-cook seafood products. [source]