D2 Receptor Binding (d2 + receptor_binding)

Distribution by Scientific Domains

Kinds of D2 Receptor Binding

  • dopamine d2 receptor binding


  • Selected Abstracts


    Dopamine D2 Receptor Binding, Drd2 Expression and the Number of Dopamine Neurons in the BXD Recombinant Inbred Series: Genetic Relationships to Alcohol and Other Drug Associated Phenotypes

    ALCOHOLISM, Issue 1 2003
    Robert Hitzemann
    Background: It has not been established to what extent the natural variation in dopamine systems contribute to the variation in ethanol response. The current study addresses this issue by measuring D2 dopamine (DA) receptor binding, the expression of Drd2, the number of midbrain DA neurons in the BXD recombinant inbred (RI) series and then compares these strain means with those previously reported for a variety of ethanol and other drug-related phenotypes. Methods: Data were collected for 21 to 23 of the BXD RI strains and the parental strains. D2 DA receptor autoradiography was performed using 125I-epidepride as the ligand [Kanes S, Dains K, Cipp L, Gatley J, Hitzemann B, Rasmussen E, Sanderson S, Silverman S, Hitzemann R (1996) Mapping the genes for haloperidol-induced catalepsy. J Pharmacol Exp Ther 277:1016,1025]. Drd2 expression was measured using the Affymetrix oligoarray system. Immunocytochemical techniques were used to determine the number of midbrain DA neurons [Hitzemann B, Dains K, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol response. J Pharmacol Exp Ther 271:969,976]. Results and Conclusions: The range of difference in receptor binding for the RI strains was approximately 2-fold in all regions examined, the core, the shell of the nucleus accumbens (NAc) and the dorsomedial caudate-putamen (CPu); heritability in all regions was moderate,(h 2,0.35). Drd2 expression in forebrain samples from the RI and parental strains ranged 1.5- to 2-fold and h2 was moderate,0.47. Variation in the number of tyrosine hydroxylase (TH) positive neurons was moderate, 41% and 26% and h2 was low,0.19 and 0.15 for the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Significant correlations were found between D2 DA receptor binding and the low dose (1.33 g/kg) ethanol stimulant response. (p < 0.002) and between Drd2 expression and conditioned place preference (CPP) (p < 0.0005). No significant correlations were detected between ethanol preference and either receptor binding or Drd2 expression; however, a significant correlation was found between preference and Ncam expression. Ncam is approximately 0.2 Mb from Drd2. Overall, the data suggest ethanol preference and CPP are associated with the expression of Drd2 or closely linked genetic loci. [source]


    Lesioning of Locus coeruleus Projections by DSP-4 Neurotoxin Treatment: Effect on Amphetamine-Induced Hyperlocomotion and Dopamine D2 Receptor Binding in Rats

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 5 2000
    Jaanus Harro
    DSP-4 is a neurotoxin highly selective for the noradrenergic nerve terminals of the locus coeruleus projections. Data on the effect of DSP-4 treatment on amphetamine-induced hyperlocomotion are contradictory. In this study, DSP-4 (50 mg/kg) caused reduction of noradrenaline levels by 70% in the cerebral cortex and by 79% in the cerebellum. This treatment resulted in upregulation of dopamine D2 receptors in the striatum as evidenced by [3H]-raclopride binding. In an open field test, DSP-4 reduced locomotor activity. D -Amphetamine (1.5 mg/kg) caused a similar increase in locomotor activity in control and DSP-4-pretreated animals not familiar to the apparatus. However, when the rats were habituated to the test apparatus, the effect of amphetamine on horizontal activity was significantly larger in the DSP-4-pretreated animals. These data suggest that supersensitivity of D2 receptors develops after locus coeruleus denervation, but that the enhanced efficacy of amphetamine in DSP-4-treated rats is masked by neophobia. [source]


    Decrease of D2 receptor binding but increase in D2 -stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose ,binge' cocaine administration paradigm

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008
    A. Bailey
    Abstract Understanding the neurobiology of the transition from initial drug use to excessive drug use has been a challenge in drug addiction. We examined the effect of chronic ,binge' escalating dose cocaine administration, which mimics human compulsive drug use, on behavioural responses and the dopaminergic system of mice and compared it with a chronic steady dose (3 × 15 mg/kg/day) ,binge' cocaine administration paradigm. Male C57BL/6J mice were injected with saline or cocaine in an escalating dose paradigm for 14 days. Locomotor and stereotypy activity were measured and quantitative autoradiographic mapping of D1 and D2 receptors, dopamine transporters and D2 -stimulated [35S]GTP,S binding was performed in the brains of mice treated with this escalating and steady dose paradigm. An initial sensitization to the locomotor effects of cocaine followed by a dose-dependent increase in the duration of the locomotor effect of cocaine was observed in the escalating but not the steady dose paradigm. Sensitization to the stereotypy effect of cocaine and an increase in cocaine-induced stereotypy score was observed from 3 × 20 to 3 × 25 mg/kg/day cocaine. There was a significant decrease in D2 receptor density, but an increase in D2 -stimulated G-protein activity and dopamine transporter density in the striatum of cocaine-treated mice, which was not observed in our steady dose paradigm. Our results document that chronic ,binge' escalating dose cocaine treatment triggers profound behavioural and neurochemical changes in the dopaminergic system, which might underlie the transition from drug use to compulsive drug use associated with addiction, which is a process of escalation. [source]


    Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2005
    Muzamil Ahmad
    Abstract Ginkgo biloba extract (EGb), a potent antioxidant and monoamine oxidase B (MAO-B) inhibitor, was evaluated for its anti-parkinsonian effects in a 6-hydroxydopamine (6-OHDA) rat model of the disease. Rats were treated with 50, 100, and 150 mg/kg EGb for 3 weeks. On day 21, 2 µL 6-OHDA (10 µg in 0.1% ascorbic acid saline) was injected into the right striatum, while the sham-operated group received 2 µL of vehicle. Three weeks after 6-OHDA injection, rats were tested for rotational behaviour, locomotor activity, and muscular coordination. After 6 weeks, they were killed to estimate the generation of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content, to measure activities of glutathione- S -transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and to quantify catecholamines, dopamine (DA) D2 receptor binding, and tyrosine hydroxylase-immunoreactive (TH-IR) fibre density. The increase in drug-induced rotations and deficits in locomotor activity and muscular coordination due to 6-OHDA injections were significantly and dose-dependently restored by EGb. The lesion was followed by an increased generation of TBARS and significant depletion of GSH content in substantia nigra, which was gradually restored with EGb treatment. EGb also dose-dependently restored the activities of glutathione-dependent enzymes, catalase, and SOD in striatum, which had reduced significantly by lesioning. A significant decrease in the level of DA and its metabolites and an increase in the number of dopaminergic D2 receptors in striatum were observed after 6-OHDA injection, both of which were significantly recovered following EGb treatment. Finally, all of these results were exhibited by an increase in the density of TH-IR fibers in the ipsilateral substantia nigra of the lesioned group following treatment with EGb; the lesioning had induced almost a complete loss of TH-IR fibers. Considering our behavioural studies, biochemical analysis, and immunohistochemical observation, we conclude that EGb can be used as a therapeutic approach to check the neuronal loss following parkinsonism. [source]


    Pharmacokinetics of sertindole and its metabolite dehydrosertindole in rats and characterization of their comparative pharmacodynamics based on in vivo D2 receptor occupancy and behavioural conditioned avoidance response

    BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2009
    Christoffer Bundgaard
    Abstract The objectives of this study were to characterize the pharmacokinetics of sertindole and its active metabolite dehydrosertindole in rats and to evaluate the central modulatory and behavioural pharmacodynamics including a competitive interaction model between the compounds. Following oral administration of sertindole or dehydrosertindole, the plasma concentration,time courses were determined in conjunction with striatal dopamine D2 receptor binding. In addition, the behavioural effects were recorded in the conditioned avoidance response (CAR) paradigm. A one-compartment model with Michaelis-Menten elimination best described the pharmacokinetics of sertindole. Formation of dehydrosertindole was incorporated into the pharmacokinetic model and exhibited first-order elimination. PK/PD modelling after administration of dehydrosertindole resulted in potency estimates of 165 and 424,ng/ml for D2 -occupancy (Kd) and CAR measurements (EC50), respectively. The pharmacokinetics of the parent,metabolite system was integrated into a competitive pharmacodynamic Emax model in order to quantitate the potency of sertindole with the pharmacodynamic parameters of the metabolite taken into account. Based on this approach, effect compartment concentrations of sertindole needed to attain 50% occupancy and half-maximal effect in the CAR paradigm were 133 and 338,ng/ml, respectively. The corresponding potency-estimates obtained after conventional modelling of the sertindole data without accounting for the metabolite amounted to 102 and 345,ng/ml. Based on competitive PK/PD analysis of the parent,metabolite interaction, the relative contribution of dehydrosertindole to the overall pharmacological effect after sertindole administration in rats appeared to be of minor significance. This could mainly be ascribed to the relatively low extent of bioconversion of sertindole into dehydrosertindole in this species. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Decreased dopamine D2 receptor binding in essential blepharospasm

    ACTA NEUROLOGICA SCANDINAVICA, Issue 1 2009
    C. Horie
    Objectives ,, The purpose of this study was to investigate whether dopamine D2 receptor binding was altered in the striatum of essential blepharospasm patients. Methods ,, Striatal dopamine D2 receptor binding was measured with positron emission tomography and [11C]raclopride. We studied eight drug-naive patients with bilateral blepharospasm and eight age-matched normal controls. Results ,, The uptake indices in the blepharospasm group were significantly reduced by 11.7% in the caudate (P < 0.005), 11.6% in the anterior putamen (P < 0.0001), and 10.3% in the posterior putamen (P < 0.005) relative to the control group. Conclusions ,, This study indicates decreased dopamine D2 receptor binding in the entire striatal region of blepharospasm patients. The findings suggest that decreased dopamine D2 receptor binding might be one of the predisposing factors that leads to the dysfunction of the motor circuit, resulting in the loss of broad inhibition of unwanted movements during an intended movement in blepharospasm patients. [source]