Home About us Contact | |||
D1 Expression (d1 + expression)
Kinds of D1 Expression Selected AbstractsSynergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathwaysGLIA, Issue 10 2007Terra J. Frederick Abstract D-type cyclins are direct targets of extracellular signals and critical regulators of G1 progression. Our previous data demonstrated that IGF-I and FGF-2 synergize to enhance cyclin D1 expression, cyclin E/cdk2 complex activation, and S-phase entry in OP cells. Here, we provide a mechanistic explanation for how two growth factor signaling pathways converge on a major cell cycle regulator. IGF-I and FGF-2 differentially activate signaling pathways to coordinately promote cyclin D1 expression. We show that the p44/p42 MAPK signaling pathway is essential for FGF-2 induction of cyclin D1 mRNA. In contrast, blocking the PI3-Kinase pathway results in loss of IGF-I/FGF-2 synergistic induction of cyclin D1 protein levels. Moreover, the presence of IGF-I significantly enhances nuclear localization of cyclin D1, which also requires PI3K signaling. GSK-3,, a downstream target of the PI3K/Akt pathway, is phosphorylated in the presence of IGF-I in OPs. Consistent with a known role for GSK-3, in cyclin D1 degradation, we show that proteasome inhibition in OPs exposed to FGF-2 increased cyclin D1 levels, equivalent to levels seen in IGF-I/FGF-2 treated cells. Thus, we provide a model for cyclin D1 coordinate regulation where FGF-2 stimulation of the MAPK pathway promotes cyclin D1 mRNA expression while IGF-I activation of the PI3K pathway inhibits proteasome degradation of cyclin D1 and enhances nuclear localization of cyclin D1. © 2007 Wiley-Liss, Inc. [source] An MLCK-dependent window in late G1 controls S phase entry of proliferating rodent hepatocytes via ERK-p70S6K pathway,HEPATOLOGY, Issue 1 2006Anne Bessard We show that MLCK (myosin light chain kinase) plays a key role in cell cycle progression of hepatocytes: either chemical inhibitor ML7 or RNA interference led to blockade of cyclin D1 expression and DNA replication, providing evidence that MLCK regulated S phase entry. Conversely, inhibition of RhoK by specific inhibitor Y27632 or RhoK dominant-negative vector did not influence progression in late G1 and S phase entry. Inhibition of either MLCK or RhoK did not block ERK1/2 phosphorylation, whereas MLCK regulated ERK2-dependent p70S6K activation. In addition, DNA synthesis was reduced in hepatocytes treated with p70S6K siRNA, demonstrating the key role played by the kinase in S phase entry. Interestingly, after the G1/S transition, DNA replication in S phase was no longer dependent on MLCK activity. We strengthened this result by ex vivo experiments and evidenced an MLCK-dependent window in late G1 phase of regenerating liver after two-thirds partial hepatectomy. In conclusion, our results underline an MLCK-dependent restriction point in G1/S transition, occurring downstream of ERK2 through the regulation of p70S6K activation, and highlighting a new signaling pathway critical for hepatocyte proliferation. (HEPATOLOGY 2006;44:152,163.) [source] Genomic and immunophenotypical differences between hepatocellular carcinoma with and without cirrhosisHISTOPATHOLOGY, Issue 6 2010Maria S Tretiakova Tretiakova M S, Shabani-Rad M T, Guggisberg K, Hart J, Anders R A & Gao Z-h (2010) Histopathology,56, 683,693 Genomic and immunophenotypical differences between hepatocellular carcinoma with and without cirrhosis Aims:, To compare the expression of genes involved in p53, Wnt/,-catenin, and retinoblastoma (Rb) 1 pathways between cirrhosis-associated hepatocellular carcinoma (HCC-C) and hepatocellular carcinoma arising in non-cirrhotic liver (HCC-NC). Methods and results:, The gene expression profile was analysed using oligo-DNA arrays, and then validated at protein level in a tissue microarray using immunohistochemistry. Compared with their background non-neoplastic liver tissue, HCC-C showed a significantly higher rate of p53, ,-catenin (protein only) and cyclin D1 expression, whereas HCC-NC showed a significantly higher rate of p21Waf1/cip1 and p27Kip1 expression. HCC-C had a significantly higher rate of p53 expression and a significantly lower rate of p21waf1/cip1 expression than HCC-NC. There was no statistically significant association between the expression of genetic markers and tumour histological grade, underlying aetiology, or lymphovascular invasion. Aberrant ,-catenin expression was more commonly seen in single tumours in comparison with multiple tumours. Increased p16INK4 and p21waf1/cip1 expression was more commonly observed in large-sized tumours (>50 mm) than small-sized tumours. Conclusions:, Alteration of the p53 pathway plays a more important role in the pathogenesis of HCC-C, whereas alterations in cell cycle regulators p21waf1/cip1 and p27Kip1 play a more important role in the pathogenesis of HCC-NC. [source] Regulation of E-cadherin and ,-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and functionINTERNATIONAL JOURNAL OF CANCER, Issue 7 2007Narasimharao Bhagavathula Abstract An siRNA directed against the extracellular calcium-sensing receptor (CaSR) was used to down-regulate this protein in CBS colon carcinoma cells. In additional studies, we utilized a variant of the parental CBS line that demonstrates CaSR expression but does not upregulate this protein in response to extracellular Ca2+. In neither the siRNA-transfected cells nor the Ca2+ -nonresponsive variant cells did inclusion of Ca2+ in the culture medium inhibit proliferation or induce morphological alterations. Extracellular Ca2+ also failed to induce E-cadherin production or a shift in ,-catenin from the cytoplasm to the cell membrane. In mock-transfected cells and in a Ca2+ -responsive variant line derived from the same parental CBS cells, Ca2+ treatment resulted in growth-reduction. This was accompanied by increased E-cadherin production and a shift in ,-catenin distribution from the cytoplasm to the cell membrane. Additionally, down-regulation of c-myc and cyclin D1 expression was observed in mock-transfected cells and in the Ca2+ -responsive variant line (along with reduced T cell factor transcriptional activation). Neither c-myc nor cyclin D1 was significantly down-regulated in the siRNA-transfected cells or in the Ca2+ -nonresponsive variant cells upon Ca2+ stimulation. In histological sections of human colon carcinoma CaSR was significantly reduced as compared to the level in normal colonic crypt epithelial cells. Where CaSR expression was high, strong surface staining for E-cadherin and ,-catenin was observed. Where CaSR expression was reduced, ,-catenin surface expression was likewise reduced. © 2007 Wiley-Liss, Inc. [source] BRCA1-IRIS activates cyclin D1 expression in breast cancer cells by downregulating the JNK phosphatase DUSP3/VHRINTERNATIONAL JOURNAL OF CANCER, Issue 1 2007Lu Hao Abstract Cyclin D1 plays an important role in cell cycle progression. In breast cancer, Cyclin D1 expression is deregulated by several mechanisms. We previously showed that in breast cancer cells, overexpression of BRCA1-IRIS induces Cyclin D1 overexpression and increases cell proliferation. BRCA1-IRIS alone or in complex with steroid receptor co-activators was targeted to the cyclin D1 promoter pre-bound by the c-Jun/AP1 and activated its transcription, which could explain the co-overexpression of BRCA1-IRIS and Cyclin D1 in breast cancer cells coupled with their increased proliferation. We report here an alternate or a complementary pathway by which BRCA1-IRIS activates Cyclin D1 expression. BRCA1-IRIS overexpression decreases the expression of the dual specificity phosphatase, DUSP3/VHR, an endogenous inhibitor of several MAPKs, including c-Jun N-terminal kinase. Although, the mechanism by which BRCA1-IRIS overexpression accomplishes that is not yet known, it is sufficient to induce Cyclin D1 overexpression in a human mammary epithelial cell model. Cyclin D1 overexpression could be blocked by co-overexpression of VHR in those cells. Furthermore, in 2 breast cancer cell lines that overexpress both BRCA1-IRIS and Cyclin D1 (MCF-7 and SKBR3) depletion of BRCA1-IRIS by RNA interference attenuated the expression of Cyclin D1 by elevating the expression level of VHR. These data demonstrate a critical role for BRCA1-IRIS in human breast cancer cell-cycle control and suggest that deregulated expression of BRCA1-IRIS is likely to reduce dependence on normal physiological growth stimuli, thereby providing a growth advantage to tumor cells and a potential mechanism of resistance to endocrine therapy. © 2007 Wiley-Liss, Inc. [source] Deregulation of Stat5 expression and activation causes mammary tumors in transgenic miceINTERNATIONAL JOURNAL OF CANCER, Issue 4 2004Elena Iavnilovitch Abstract Members of the signal transducers and activators of transcription (Stat) family regulate essential cellular growth and survival functions in normal cells and have also been implicated in tumorigenesis. We have studied the potential role of Stat5 in mammary tumorigenesis by targeting Stat5 variants to the mammary gland of transgenic mice using regulatory sequences of the ,-lactoglobulin gene. Mammary-directed expression of the wild-type Stat5, constitutively activated Stat5 and carboxyl-terminally truncated dominant negative Stat5 forms resulted in mammary tumors with incidence rates of up to 22% and latency periods of 8,12 months. Undifferentiated carcinomas most frequently occurred in mice expressing the carboxyl-terminally truncated Stat5. The more differentiated papillary and micropapillary adenocarcinomas were primarily found in mice overexpressing the native and constitutively active transgenes. Higher levels of translation initiation factor 4E (eIF4E) and cyclin D1 expression but lower levels of activated Stat3 were found in tumors of mice expressing the constitutively active Stat5 when compared to mice expressing the wild-type or truncated forms. A higher expression of the estrogen receptor (ER,) was observed in carcinomas compared to other phenotypes. The ability of both forms of Stat5, the transactivating form and the dominant negative form, to participate in oncogenesis indicates that there is more than one mechanism by which Stat5 contributes to this process. The transactivation function of Stat5 is involved in the determination of tumors with a more differentiated phenotype. © 2004 Wiley-Liss, Inc. [source] Cyclin D1 overexpression associates with radiosensitivity in oral squamous cell carcinomaINTERNATIONAL JOURNAL OF CANCER, Issue 3 2001Ph.D., Satoru Shintani D.D.S. Abstract Overexpression of cyclin D1, a G1 cell cycle regulator, is often found in many different tumor types, including oral squamous cell carcinomas (SCC). Recent laboratory experiments have demonstrated that cyclin D1 levels can influence radiosensitivity in various cell lines. This study evaluated the relationship between cyclin D1 expression levels and radiosensitivity in nine oral SCC cell lines (HSC2, HSC3, HSC4, SCC15, SCC25, SCC66, SCC111, Ca9-22, and NAN2) and 41 clinical patients with oral SCC who underwent preoperative radiation therapy. Radiosensitivity of the nine oral SCC cell lines differed greatly in their response to radiation, assessed by a standard colony formation assay. Likewise, the expression of cyclin D1 varied, and the magnitude of the cyclin D1 expression correlated with increased tumor radiosensitivity. The similar significant association between the response to preoperative radiation therapy and cyclin D1 overexpression was observed in the oral SCC patients who were treated with preoperative radiation therapy. These results suggest that cyclin D1 expression levels correlate to radiosensitivity and could be used to predict the effectiveness of radiation therapy on oral SCC. © 2001 Wiley-Liss, Inc. [source] Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaPINTERNATIONAL JOURNAL OF UROLOGY, Issue 3 2007Yoichi Iwasa Aim: To investigate the mechanisms of androgen-independent growth in prostate cancer (PCa), we established two PCa cell lines, LN-REC4 and LNCaP-SF, from the androgen-dependent PCa cell line, LNCaP. Materials and methods: LN-Pre and LN-REC4 cells were generated from LNCaP tumors grown on intact and castrated severe combined immunodeficient (SCID) mouse, respectively. After we cultured LNCaP cells under a steroid-free conditions for 6 months in vitro, LNCaP-SF cells were established. To show the character of LN-REC4 and LNCaP-SF cells, androgen sensitivity was investigated through examination of growth rate, and prostate-specific antigen (PSA), androgen receptor (AR), p21, p27, and cyclin D1 expression were examined by reverse transcription-polymerase chain reaction (RT-PCR). Angiogenesis assay in vitro was carried out using conditioned medium. To examine the expression level of vascular endothelial growth factor (VEGF), RT-PCR and enzyme-linked immunosorbent assay were also done. Results and conclusions: LN-REC4 cells proliferated better than LNCaP cells in castrated mice and did well irrespective of castration, although responsiveness for androgen of LN-REC4 cells attenuated less than that of LNCaP cells in vitro. LNCaP-SF cells in castrated mice proliferated more rapidly than in normal mice. The PSA expression in LNCaP-SF cells was still induced by androgen. Expression of AR, p21, p27 and cyclin D1 were not changed in LN-REC4 and LNCaP-SF cells. Angiogenesis assay showed that both cells stimulated angiogenesis. LN-REC4 induced VEGF more than LNCaP and LN-Pre cells. However, expression of VEGF per cell in LNCaP-SF was lower than LNCaP cells, suggesting that other factors might be involved in angiogenesis. These cell lines might be a useful tool for researching androgen-independent growth and treatments of recurred PCa. [source] Cyclin D1 as a Target for the Proliferative Effects of PTH and PTHrP in Early Osteoblastic CellsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2007Nabanita S Datta MS Abstract PTHrP induced a proliferative cyclin D1 activation in low-density osteoblastic cells. The process was PKA and MAPK dependent and involved both AP-1 and CRE sites. In ectopic ossicles generated from implanted bone marrow stromal cells, PTH upregulated cyclin D1 after acute or intermittent anabolic treatment. These data suggest a positive role of PTH and PTHrP in the cell cycle of early osteoblasts. Introduction: The mechanisms underlying the actions of PTH and its related protein (PTHrP) in osteoblast proliferation, differentiation, and bone remodeling remain unclear. The action of PTH or PTHrP on the cell cycle during osteoblast proliferation was studied. Materials and Methods: Mouse calvarial MC3T3-E1 clone 4 cells were synchronized by serum starvation and induced with 100 nM PTHrP for 2,24 h under defined low serum conditions. Western blot, real-time PCR, EMSAs, and promoter/luciferase assays were performed to evaluate cyclin D1 expression. Pharmacological inhibitors were used to determine the relevant signaling pathways. Ectopic ossicles generated from implanted bone marrow stromal cells were treated with acute (a single 8- or 12-h injection) or intermittent anabolic PTH treatment for 7 days, and RNA and histologic analysis were performed. Results: PTHrP upregulated cyclin D1 and CDK1 and decreased p27 expression. Cyclin D1 promoter/luciferase assays showed that the PTHrP regulation involved both activator protein-1 (AP-1) and cyclic AMP response element binding protein (CRE) sites. AP-1 and CRE double mutants completely abolished the PTHrP effect of cyclin D1 transcription. Upregulation of cyclin D1 was found to be protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) dependent in proliferating MC3T3-E1 cells. In vivo expression of cyclin D1 in ectopic ossicles was upregulated after a single 12-h PTH injection or intermittent anabolic PTH treatment for 7 days in early developing ossicles. Conclusions: These data indicate that PTH and PTHrP induce cyclin D1 expression in early osteoblastic cells and their action is developmental stage specific. [source] PTHrP Signaling Targets Cyclin D1 and Induces Osteoblastic Cell Growth Arrest,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2005Nabanita S Datta PhD Abstract PTHrP control of the MC3T3-E1 cell cycle machinery showed that, during differentiation, PTHrP induced G1 growth arrest. Cyclin D1 was a critical mediator as a downstream effector of cAMP, PKC, and MAPK signaling, and the process was PKA-independent. The involvement of JunB has been found critical for PTHrP effects. Introduction: PTH-related protein (PTHrP) has been implicated in the control of bone cell turnover, but the mechanisms underlying its effect on osteoblast proliferation and differentiation have not been clearly defined. The mechanisms by which PTHrP impacts cell cycle proteins and the role of signaling pathways in differentiated osteoblasts were studied. Materials and Methods: To elucidate the role of PTHrP, flow cytometric analyses were performed using MC3T3-E1 and primary mouse calvarial cells. Relative protein abundance (Western blot), physical association of partners (immunoprecipitation), and kinase activities (in vitro kinase assays using either GST-Rb or H1-histone as substrates) of cell cycle-associated proteins in vehicle and PTHrP-treated 7-day differentiated cells were determined. ELISA and/or Northern blot analyses were done to evaluate JunB and cyclin D1 expression. SiRNA-mediated gene silencing experiments were performed to silence JunB protein. Finally, inhibitors of cAMP, protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) were used to determine involvement of different signaling pathways. Results: PTHrP inhibited cyclin D1 protein expression 7-fold in a dose- and time-dependent manner and increased the level of p16 protein in differentiated osteoblasts. Additionally, PTHrP reduced cyclin D1-CDK4/CDK6 and CDK1 kinase activities. Forskolin, a cAMP agonist, mimicked PTHrP action, and the PKC inhibitor, GF109203X, slightly blocked downregulation of cyclin D1, implying involvement of both cAMP and PKC. U0126, a MAPK inhibitor, alone decreased cyclin D1 protein, suggesting that the basal cyclin D1 protein is MAPK dependent. H-89, a PKA inhibitor, did not alter the effect of PTHrP on cyclin D1, suggesting a PKA-independent mechanism. Finally, expression of JunB, an activating protein-1 transcription factor, was significantly upregulated, and silencing JunB (siRNA) partially reversed the cyclin D1 response, implying involvement of JunB in the PTHrP-mediated growth arrest of MC3T3-E1 cells. Conclusion: PTHrP upregulates JunB and reduces cyclin D1 expression while inducing G1 cell cycle arrest in differentiated osteoblasts. Such regulation could be an important determinant of the life span and bone-forming activity of osteoblasts. [source] Helicobacter pylori and mitogen-activated protein kinases regulate the cell cycle, proliferation and apoptosis in gastric epithelial cellsJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7pt2 2008Song-Ze Ding Abstract Background and Aims:,Helicobacter pylori infection activates mitogen-activated protein kinases (MAPK) and modulates cell proliferation and apoptosis. However, the relationship between H. pylori infection and MAPK signaling in controlling cell proliferation and apoptosis is not clear, nor has the role of MAPK on the gastric epithelial cell cycle and proliferation been established. Therefore, we investigated the effects of H. pylori infection and MAPK inhibition on these processes. Methods:, Gastric epithelial cell lines (AGS and MKN45) were infected with H. pylori and/or treated with MAPK inhibitors. Cell cycle and apoptosis were measured by flow cytometry. Cell cycle proteins and proliferation were monitored by western blot and cell count, respectively. Results:, Infection with H. pylori resulted in dose-dependent MAPK activation, cell cycle arrest, reduced proliferation and increased apoptosis. The effect of H. pylori and MAPK at various cell cycle checkpoints was noted: MEK1/2 and p38 inhibition increased H. pylori -induced cell cycle G1 arrest, while JNK inhibition reduced G1 arrest. MEK1/2 inhibition increased p21, p27 and cyclin E and JNK inhibition additionally increased cyclin D1 expression. Both inhibitors decreased cell proliferation. All inhibitors enhanced apoptosis after H. pylori infection. We also detected MAPK cross-talk in AGS cells: p38 and JNK inhibitors increased ERK activation. The p38 inhibitor increased JNK and the MEK1/2 inhibitor decreased JNK activation only during H. pylori infection. Conclusions:, These results suggest H. pylori and MAPK differentially regulate the cell cycle, proliferation and apoptosis in gastric epithelial cells. The imbalance between H. pylori infection and MAPK activation likely contributes to the H. pylori -induced pathogenesis. [source] Tumor necrosis factor-alpha inhibits Schwann cell proliferation by up-regulating Src-suppressed protein kinase C substrate expressionJOURNAL OF NEUROCHEMISTRY, Issue 3 2009Tao Tao Abstract Src-suppressed protein kinase C substrate (SSeCKS) is a protein kinase C substrate protein, which plays an important role in mitogenic regulatory activity. In the early stage of nerve injury, expression of SSeCKS in the PNS increases, mainly in Schwann cells (SCs). However, the exact function of SSeCKS in the regulation of SC proliferation remains unclear. In this study, we found that tumor necrosis factor-alpha (TNF-,) induced both SSeCKS , isoform expression and SC growth arrest in a dose-dependent manner. By knocking down SSeCKS , isoform expression, TNF-,-induced growth arrest in SCs was partially rescued. Concurrently, the expression of cyclin D1 was reduced and the activity of extracellular signal-regulated kinase 1/2 was decreased. A luciferase activity assay showed that cyclin D1 expression was regulated by SSeCKS at the transcription level. In addition, the cell fragments assay and immunofluorescence revealed that TNF-, prevented the translocation of cyclin D1 into the nucleus, while knocking down SSeCKS , isoform expression prompted cyclin D1 redistribution to the nucleus. In summary, our data indicate that SSeCKS may play a critical role in TNF-,-induced SC growth arrest through inhibition of cyclin D1 expression thus preventing its nuclear translocation. [source] Ethanol Modulation of TNF-alpha Biosynthesis and Signaling in Endothelial Cells: Synergistic Augmentation of TNF-alpha Mediated Endothelial Cell Dysfunctions by Chronic EthanolALCOHOLISM, Issue 6 2005Corinne Luedemann Despite reported cardio-protective effects of low alcohol intake, chronic alcoholism remains a risk factor in the pathogenesis of coronary artery disease. Dose related bimodal effects of alcohol on cardiovascular system might reflect contrasting influences of light versus heavy alcohol consumption on the vascular endothelium. Chronic ethanol induced damage to various organs has been linked to the increased release of TNF-alpha (TNF). We have previously shown that TNF, expressed at the sites of arterial injury, suppresses re-endothelialization of denuded arteries and inhibits endothelial cell (EC) proliferation in vitro. Here we report that in vitro chronic ethanol exposure enhances agonist-induced TNF mRNA and protein expression in EC. Ethanol-mediated increment in TNF expression involves increased de novo transcription without affecting mRNA stability. DNA binding assays revealed that ethanol-induced TNF up regulation was AP1 dependent. Functionally, TNF induced EC dysfunction, including reduced proliferation, migration and cyclin A expression, were all markedly enhanced in the presence of ethanol. Additionally, expression of cyclin D1 was significantly attenuated in cells co-treated with TNF and ethanol while each treatment alone had little effect on cyclin D1 expression. Furthermore, exposure to ethanol potentiated and prolonged agonist-induced activation of JNK. Inhibition of JNK by over-expression of dominant negative JNK1 substantially reversed ethanol/TNF-mediated inhibition of cyclin A expression and EC proliferation, suggesting modulation of JNK1 signaling as the mechanism for ethanol/TNF-induced EC dysfunctions. Taken together, these data indicate that chronic ethanol consumption may negatively influence post angioplasty re-endothelialization thereby contributing to the development of restenosis. [source] Coordinated expression of cyclin D1 and LEF-1/TCF transcription factor is restricted to a subset of hepatocellular carcinomaLIVER INTERNATIONAL, Issue 4 2005Annette Schmitt-Graeff Abstract: Background: While the Wnt pathway has been widely implicated in hepatocarcinogenesis, the role of cyclin D1 as a direct downstream target gene of ,-catenin-lymphoid enhancer factor-1 (LEF-1)/T-cell factor (TCF) signaling is controversely discussed. Methods: By immunohistochemical analyses we studied the subcellular localization of LEF-1/TCF and cyclin D1 in 162 hepatocellular carcinoma (HCC). Single- and double-label imaging by brightfield and confocal laser scanning microscopy was quantitated and correlated with ,-catenin, the Ki67+ proliferation fraction (PF), tumor size, grade, the Okuda stage and patient survival. Results: The frequency of nuclear cyclin D1 expression was 28% and closely correlated with LEF-1/TCF (P<0.0001) and the Ki67+ PF (P=0.03). Nuclear LEF-1/TCF expression was observed in 52% of all cases, but was also present in 42% of cyclin D1, cases. Nuclear ,-catenin was identified in 37% of all HCCs and correlated with LEF-1/TCF (P=0.04). The expression of cyclin D1, LEF-1/TCF or ,-catenin did not correlate with other clinico-pathological data. Conclusions: A large proportion of HCCs does not appear to be linked to a deregulation of cyclin D1. However, the coordinated expression of cyclin D1 and LEF-1/TCF in some cases suggests the role of cyclin D1 as a Wnt target gene in a subset of HCCs. [source] Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesisMOLECULAR CARCINOGENESIS, Issue 12 2006Masahiro Yamamoto Abstract Cyclin D1 overexpression is a frequent change in hepatocellular carcinomas (HCCs). Our present study demonstrated that cyclin D1 overexpression with abundant cyclin E, cdk4, cdk2, and p27Kip1 (p27) occurred in neoplastic hepatocytes from the early stage of mouse hepatocarcinogenesis. While cyclin D1 expression was mainly found in the cytoplasm of the tumor cells, it shifted to the nucleus in association with cell proliferation after the animals were subjected to a partial hepatectomy (PH), and then returned once more to the cytoplasm when the cells became quiescent. Inhibition of PI3 kinase (PI3K) by Ly294002 in mouse HCC cells in vitro suppressed the nuclear shift of cyclin D1 as well as cell proliferation, while PI3K activation by PTEN suppression failed to induce nuclear shift of cyclin D1, suggesting that PI3K activation is essential but not sufficient for the cyclin D1 nuclear shift. While MEK-ERK1/2 inhibition by PD98059 and mTOR inhibition by rapamycin affected the cyclin D1 nuclear shift and cell proliferation to a lesser extent, both these inhibitors reduced cyclin D1 levels. Finally, although p27, cdk4 and calmodulin (CaM) were detected in the cyclin D1 immunoprecipitates from both quiescent and proliferating HCC cells, Hsc70 and SSeCKS were detected only in the immunoprecipitate from quiescent cells, and p21Waf1/Cip1 (p21) was detected only in that from proliferating cells, suggesting that the cyclin D1 complex is different in quiescent and proliferating cells. These observations indicate that the nuclear/cytoplasmic localization of cyclin D1 plays an important role in the proliferation/quiescence of neoplastic hepatocytes. © 2006 Wiley-Liss, Inc. [source] Cyclin D1 expression in normal oligodendroglia and microglia cells: Its use in the differential diagnosis of oligodendrogliomasNEUROPATHOLOGY, Issue 3 2001Ivana Bosone Cyclin D1 regulates G1,S progression. In many carcinomas it is overexpressed and it might even correlate with prognosis. However, the amplification of CCND1 contributes to the loss of cell cycle control only in a small fraction of malignant gliomas. Cyclin D1 can be immunohistochemically demonstrated by DCS-6 mAb. In astrocytic gliomas the fraction of tumor cells with positive nuclei is almost null in well differentiated tumors and increases with the increase of proliferation rate that occurs in anaplasia. The correct evaluation of this fraction is hindered by the positive staining of normal oligodendrocytes and microglia cells. The cyclin D1-positive staining of normal oligodendrocytes and microglia cells has been studied in a series of 20 oligodendrogliomas, five diffuse astrocytomas and five oligoastrocytomas and in 10 samples of normal cortex and white matter, using cyclin D1 DCS-6 mAb, Feulgen reaction and CR3.43 mAb for microglia cells. As well as microglial nuclei, the nuclei of normal oligodendrocytes of the cortex and white matter, including peri-neuronal satellites and pericapillary cells, were immunostained by DCS-6 mAb. In infiltrative areas of oligodendrogliomas, normal, cyclin D1-positive oligodendrocytes and cyclin D1-negative tumor cells coexisted. In anaplastic oligodendrogliomas, cycling tumor oligodendrocytes may regain the capacity to express cyclin D1, which is thus positive in some tumor cells. The occurrence of positive oligodendrocytes in the peripheral parts of tumors can be useful in distinguishing astrocytomas from oligoastrocytomas. [source] Morphological spectrum of cyclin D1-positive mantle cell lymphoma: Study of 168 casesPATHOLOGY INTERNATIONAL, Issue 10 2001Yasushi Yatabe Immunostaining for cyclin D1 is essential for reliable diagnosis of mantle cell lymphoma (MCL). However, a small number of cyclin D1-positive lymphomas other than MCL have been encountered. Our goal was to investigate the morphological spectrum of MCL as a disease entity, based on cyclin D1 overexpression. We reviewed 181 biopsy specimens obtained from 168 cases of cyclin D1-positive MCL. Typical findings were the presence of nodular (53.9% of cases) or diffuse (46.1%) histological patterns, containing mantle zone patterns (16.8%), naked germinal centers (33.5%) and perivascular hyaline deposition (83.2%). Unusual findings of residual germinal centers with a mantle cuff (four cases) and follicular colonization (two cases) were seen. High magnification showed a monotonous proliferation of tumor cells with cytological diversity including small (3.0%), intermediate (43.1%), medium (34.1%), medium, large (13.2%) and large (6.6%) cells. Pleomorphic and blastic / blastoid variants were encountered in 9.6 and 7.2% of cases, respectively. Three cases had foci of cells of considerable size, with a moderately abundant pale cytoplasm resembling marginal zone B cells. Two cases showed an admixture of cells which appeared transformed and mimicked the histology of chronic lymphocytic leukemia / small lymphocytic leukemia. In one, neoplastic mantle zones were surrounded by sheets of mature plasma cells, resembling the plasma cell type of Castleman's disease. An admixture of areas characteristic of MCL and of other larger cells, indicating histological progression or a composite lymphoma, were observed in seven cases. In high-grade lesions of five cases, nuclear staining of cyclin D1 was rarely detected. In our experience, cyclin D1 expression was also found in nine lymphomas other than MCL (five plasma cell myelomas, three Hodgkin's disease and one anaplastic large cell lymphoma). The application of cyclin D1 staining prompted us to recognize the broad morphological spectrum of MCL. MCL can be diagnosed with the application of cyclin D1 immunostaining, if careful attention is given to architectural and cytological features. [source] Cyclin D1 expression in ductal carcinoma in situ, atypical ductal hyperplasia and usual ductal hyperplasia: An immunohistochemical studyPATHOLOGY INTERNATIONAL, Issue 7 2000Yoshihisa Umekita The cell cycle regulatory gene, Cyclin D1, plays a critical role in the growth and progression of several types of human cancer, including breast cancer. Immunohistochemical study of Cyclin D1 expression has been extensively reported in invasive ductal carcinoma (IDC). In contrast, there have been few reports concerning Cyclin D1 expression in ductal carcinoma in situ (DCIS) and their positive rates are variable. The differences in the reported frequency may be largely due to the differences in antibodies used, immunohistochemical methods and the positive cut-off point. However, we speculated that the strictness of diagnosis of DCIS might be somewhat responsible for these differences in frequency. Therefore, we selected cases of DCIS by carefully eliminating cases of predominantly intraductal carcinoma (PIC). Moreover, to clarify whether Cyclin D1 expression is involved in multistep carcinogenesis or the progression of human breast cancer, we immunohistochemically investigated Cyclin D1 expression in 57 DCIS, 10 atypical ductal hyperplasia (ADH), 70 usual ductal hyperplasia (UDH), 44 PIC and 92 IDC. Cyclin D1 expression was detected in 41 DCIS cases (72%), 22 PIC cases (50%) and 40 IDC cases (43%). No expression of Cyclin D1 was observed in either ADH or UDH. There were no significant correlations between Cyclin D1 expression and histological grade or estrogen receptor expression in DCIS. These results suggest that Cyclin D1 expression may play an important role in the early stages of carcinogenesis, and that immunohistochemical detection of Cyclin D1 expression may be helpful in differentiating low-grade DCIS from ADH. [source] Differential expression of peroxisome proliferator activated receptor , and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cellsRESPIROLOGY, Issue 2 2010Justine Y. LAU ABSTRACT Background and objective: Airway remodelling involves thickening of the airway smooth muscle (ASM) bulk. Proliferation of asthma-derived ASM cells is increased in vitro, but underlying mechanisms remain unknown. Peroxisome proliferators activated receptor-, (PPAR,) regulates the cell cycle. It is suggested that PPAR, agonists have anti-inflammatory effects, which may be valuable in the treatment of asthma, but information regarding their antiproliferative properties in ASM is lacking. Although corticosteroids reduce airway inflammation, in vitro they inhibit proliferation in only non-asthma ASM cells by reducing cyclin D1. We therefore investigated the effects of mitogenic stimulation (foetal bovine serum (FBS)), and a PPAR, ligand (ciglitazone), on PPAR, and cyclin D1 expression and proliferation of ASM cells. In addition, we examined the effects of ciglitazone on ASM cell proliferation. Methods: We assessed PPAR, and cyclin D1 mRNA and protein levels using quantitative PCR and immunoblotting. Cell proliferation was assessed using bromodeoxyuridine uptake. Results: In the presence of 5% FBS, PPAR, and cyclin D1 expression decreased over time in non-asthmatic cells but increased in asthmatic cells (compared with sub-confluent cells). FBS-induced proliferation of asthmatic cells increased at all time points, but occurred only at day 7 with non-asthmatic cells (compared with unstimulated time-matched control). Ciglitazone increased PPAR, expression in both groups, but did not alter cell proliferation, while fluticasone increased PPAR, protein only in asthmatic cells. Conclusions: Although in the presence of a mitogenic stimulus, PPAR, was differentially expressed in asthma- and non-asthma-derived ASM; its expression was not related to the increased proliferation observed in asthmatic ASM. [source] NF-,B2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivationTHE PROSTATE, Issue 16 2008Nagalakshmi Nadiminty Abstract PURPOSE Androgen-deprivation therapy only causes a temporary regression of prostate cancer, as all tumors will eventually progress to refractory to hormonal therapy after 1,3 years of treatment. The underlying mechanisms of prostate cancer androgen refractory progression are incompletely understood. In this study, we employed in vitro as well as in vivo models to examine the role of NF-,B2/p52 in prostate cancer growth and androgen independent progression. EXPERIMENTAL DESIGN The effects of NF-,B2/p52 on cell growth, androgen responsiveness, cell cycle and apoptosis were examined in androgen sensitive LNCaP cells. The effect of NF-,B2/p52 on tumor growth was examined in intact and castrated male mice. RESULTS Overexpression of NF-,B2/p52 enhances androgen-sensitive LNCaP human prostate cancer cell growth and clonogenic ability in androgen-deprived condition in vitro. NF-,B2/p52 induced androgen-independent growth is through protecting LNCaP cells from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. In addition, NF-,B2/p52 stimulates Cyclin D1 expression and knock down of Cyclin D1 expression by siRNA abolished NF-,B2/p52-induced cell growth in vitro. Adenoviral mediated NF-,B2/p52 expression in LNCaP cells enhances tumor growth in intact male nude mice and induces tumor growth in castrated male nude mice, suggesting that overexpression of NF-,B2/p52 induces androgen-independent growth of androgen-sensitive LNCaP cells. CONCLUSIONS Overexpression of NF-,B2/p52 protects androgen sensitive LNCaP cells from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. NF-,B2/p52 activation induces androgen-independent growth in vitro and in vivo. Prostate © 2008 Wiley-Liss, Inc. [source] Differential expression of LAMPs and ubiquitin in human thymusAPMIS, Issue 4 2009VICTORIA S. SARAFIAN Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are implicated in a variety of normal and pathological processes. LAMP-2 is proposed to participate in chaperone-mediated autophagy. Autophagy regulates T-lymphocyte homeostasis by promoting both survival and proliferation. The biological importance of this process in the thymic gland and especially the involvement of LAMPs are far from being elucidated. The aim of the study was to examine the parallel expression of LAMPs and ubiquitin, a key molecule in autophagy, in normal human thymic glands and thymomas. The immunohistochemical expression of both markers was compared with that of cyclin D1 , an important regulator of cell cycle progression. Novel evidence for differential expression of LAMPs and ubiquitin is presented. Most Hassal's corpuscules in thymoma were negative for LAMPs, but positive in normal thymus. Both lymphocytes and epithelial cells in pathological thymus showed higher intensity for LAMP-2 compared with LAMP-1. In thymoma, ubiquitin was more intensively positive in these cell types compared with the normal thymus, suggesting activated autophagy in the course of this pathological state. A deregulation in cyclin D1 expression in thymoma is also reported. The functional importance of these molecules in autoghagy accompanying normal and pathological processes in the thymic gland is reviewed. [source] Influence of cell cycle on ecdysteroid receptor in CHO-K1 cellsARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2009Katarzyna Betanska Abstract CHO-K1 cells are routinely used for characterization of ecdysone receptor (EcR) function, because these vertebrate cells are devoid of endogenous ecdysone receptor protein. Moreover, the endogenous expression of RXR, the vertebrate orthologue of Ultraspiracle (Usp), the most important heterodimerization partner, is neglectable. In contrast to insect cells, there is also no influence of moulting hormone on CHO-K1 cells on cell proliferation either in the absence or presence of transiently expressed EcR. In contrast to Usp, which is exclusively found in nuclei, EcR is heterogeneously distributed between cytoplasm and nuclei in non-synchronized cells. Synchronization of CHO-K1 cells by nocodazole revealed that the cell cycle influences receptor concentration with lowest amounts in late S-phase and G2/M phase and intracellular distribution of the receptor protein showing a minimum of receptors present in nuclei during S-phase. EcR, but not Usp reduces cyclin D1 expression and cyclin D1 concentration is impaired by cyclin D1. Coimmunoprecipitation studies reveal physical interaction of EcR and cyclin D1. © 2009 Wiley Periodicals, Inc. [source] Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemiaCANCER SCIENCE, Issue 2 2010Vanesa Martín Wnt5a is a member of the Wnt family of proteins that signals through the non-canonical Wnt/Ca2+pathway to suppress cyclin D1. Deregulation of this pathway has been found in animal models suggesting that it acts as tumour suppressor in acute myeloid leukemia (AML). Although DNA methylation is the main mechanism of regulation of the canonical Wnt pathway in AML, the role of WNT5A abnormalities has never been evaluated in this clinical setting. The methylation status of WNT5A promoter,exon 1 was analyzed by methylation-specific PCR and sequencing in eleven AML-derived cell lines and 252 AML patients. We observed WNT5A hypermethylation in seven cell lines and in 43% (107/252) of AML patients. WNT5A methylation was associated with decreased WNT5A expression (P < 0.001) that was restored after exposure to 5-Aza-2'-deoxycytidine. Moreover, WNT5A hypermethylation correlated with upregulation of CYCLIN D1 expression (P < 0.001). Relapse (15%vs 37%, P < 0.001) and mortality (61%vs 79%, P = 0.004) rates were lower for patients in the non-methylated group. Disease-free survival and overall survival at 6 and 7 years, respectively, were 60% and 27% for unmethylated patients and 20% and 0% for hypermethylated patients (P = 0.0001 and P = 0.04, respectively). Interestingly, significant differences were also observed when the analysis was carried out according to cytogenetic risk groups. We demonstrate that WNT5A, a putative tumor suppressor gene in AML, is silenced by methylation in this disease and that this epigenetic event is associated with upregulation of CYCLIN D1 expression and confers poor prognosis in patients with AML. (Cancer Sci 2009) [source] Daintain/AIF-1 promotes breast cancer proliferation via activation of the NF-,B/cyclin D1 pathway and facilitates tumor growthCANCER SCIENCE, Issue 5 2008Shou Liu Recent research indicates that inflammatory factors play important roles in the initiation and progression of cancers, including breast cancer. Daintain/allograft inflammatory factor-1 (AIF-1) is a crucial mediator in the inflammatory response, but it has not yet been reported whether daintain/AIF-1 is involved in the development of breast cancers. In this study, immunohistochemical analysis found strong positive expression of daintain/AIF-1 in breast ductal tumor epithelia, but only weakly positive or negative expression in the adjacent histologically normal ductal epithelia. Then, the effect of daintian/AIF-1 on the proliferation of the breast cancer cell line MDA-MB-231 was explored via transduction of the daintian/AIF-1 gene into the cells, and via inhibition of the expression of daintain/AIF-1 through short interference RNA. The results demonstrated that up-regulation and down-regulation of daintain/AIF-1 expressions promoted and inhibited the proliferation of MDA-MB-231, respectively. More interestingly, daintain/AIF-1 overexpression facilitated tumor growth in female nude mice. Furthermore, we found that daintain/AIF-1 overexpression up-regulated the expression of cyclin D1 and enhanced the transcriptional activity of nuclear factor-kappa B (NF-,B), a regulator of cyclin D1 expression. In contrast, the down-regulation of daintain/AIF-1 expression decreased cyclin D1 expression and inhibited the transcriptional activity of NF-,B. These results strongly suggest that daintain/AIF-1 can promote the growth of breast tumors via activating NF-,B signaling, which consequently up-regulates the expression of cyclin D1, implying that daintain/AIF-1 may be a novel target molecule for the prognosis and therapy of breast cancer. (Cancer Sci 2008; 99: 952,957) [source] Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expressionCANCER SCIENCE, Issue 5 2007Etsu Tashiro Cyclin D1 binds to the Cdk4 and Cdk6 to form a pRB kinase. Upon phosphorylation, pRB loses its repressive activity for the E2F transcription factor, which then activates transcription of several genes required for the transition from the G1- to S-phase and for DNA replication. The cyclin D1 gene is rearranged and overexpressed in centrocytic lymphomas and parathyroid tumors and it is amplified and/or overexpressed in a major fraction of human tumors of various types of cancer. Ectopic overexpression of cyclin D1 in fibroblast cultures shortens the G1 phase of the cell cycle. Furthermore, it has been demonstrated that introduction of an antisense cyclin D1 into a human carcinoma cell line, in which the cyclin D1 gene is amplified and overexpressed, causes reversion of the malignant phenotype. Thus, increased expression of cyclin D1 can play a critical role in tumor development and in maintenance of the malignant phenotype. However, it is insufficient to confer transformed properties on primary or established fibroblasts. In this review, we summarize the role of cyclin D1 on tumor development and malignant transformation. In addition, our chemical biology study to understand the regulatory mechanism of cyclin D1 transcription is also reviewed. (Cancer Sci 2007; 98: 629,635) [source] Heparin regulates colon cancer cell growth through p38 mitogen-activated protein kinase signallingCELL PROLIFERATION, Issue 1 2010G. Chatzinikolaou Objectives:, Heparin acts as an extracellular stimulus capable of activating major cell signalling pathways. Thus, we examined the putative mechanisms utilized by heparin to stimulate HT29, SW1116 and HCT116 colon cancer cell growth. Materials and methods:, Possible participation of the mitogen-activated protein kinase (MAPK) cascade on heparin-induced HT29, SW1116 and HCT116 colon cancer cell growth was evaluated using specific MAPK cascade inhibitors, Western blot analysis, real-time quantitative PCR and FACS apoptosis analysis. Results:, Treatment with a highly specific p38 kinase inhibitor, SB203580, significantly (50,70%) inhibited heparin-induced colon cancer cell growth, demonstrating that p38 MAPK signalling is involved in their heparin-induced proliferative response. This was shown to be correlated with increased (up to 3-fold) phosphorylation of 181/182 threonine/tyrosine residues on p38 MAP kinase. Furthermore, heparin inhibited cyclin-dependent kinase inhibitor p21WAF1/CIP1 and p53 tumour suppressor gene and protein expression up to 2-fold or 1.8-fold, respectively, and stimulated cyclin D1 expression up to 1.8-fold, in these cell lines through a p38-mediated mechanism. On the other hand, treatment with heparin did not appear to affect HT29, SW1116 and HCT116 cell levels of apoptosis. Conclusions:, This study demonstrates that an extracellular glycosaminoglycan, heparin, finely modulates expression of genes crucial to cell cycle regulation through specific activation of p38 MAP kinase to stimulate colon cancer cell growth. [source] CDK2 regulation through PI3K and CDK4 is necessary for cell cycle progression of primary rat hepatocytesCELL PROLIFERATION, Issue 4 2007L. Wierřd In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G1 phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. Methods and results: In this study, we have explored the role of CDK4 activity during G1 progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. Conclusions: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G1 phase. [source] Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiationCELL PROLIFERATION, Issue 5 2004S. Lange Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial ,-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1 - and p16INK4a -expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1 - and p16INK4a - levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR. [source] |