Cytoskeletal Dynamics (cytoskeletal + dynamics)

Distribution by Scientific Domains


Selected Abstracts


AKAP-independent localization of type-II protein kinase A to dynamic actin microspikes

CYTOSKELETON, Issue 9 2009
Robert L. Rivard
Abstract Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RII, subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RII, and a GFP-RII, fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RII,-associated microspikes are highly dynamic and that the coupling of RII, to actin is tight, as the movement of both actin and RII, are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RII, and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RII, is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RII, fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2008
B.H. Leu
Abstract In the developing visual system, correlated presynaptic activity between neighboring retinal ganglion cells (RGC) stabilizes retinotopic synapses via a postsynaptic NMDAR (N -methyl- D -aspartate receptor)-dependent mechanism. Blocking NMDARs makes individual axonal arbors larger, which underlies an unsharpened map, and also increases branch turnover, as if a stabilizing factor from the postsynaptic partner is no longer released. Arachidonic acid (AA), a candidate retrograde stabilizing factor, is released by cytoplasmic phospholipase A2 (cPLA2) after Ca2+ entry through activated NMDARs, and can activate presynaptic protein kinase C to phosphorylate various substrates such as GAP43 to regulate cytoskeletal dynamics. To test the role of cPLA2 in the retinotectal system of developing zebrafish, we first used PED6, a fluorescent reporter of cPLA2 activity, to show that 1,3 min of strobe flashes activated tectal cPLA2 by an NMDAR-dependent mechanism. Second, we imaged the dynamic growth of retinal arbors during both local inhibition of tectal cPLA2 by a pharmacological inhibitor, arachidonic tri-fluoromethylketone, and its suppression by antisense oligonucleotides (both injected intraventricularly). Both methods produced larger arbors and faster branch dynamics as occurs with blocking NMDARs. In contrast, intraocular suppression of retinal cPLA2 with large doses of antisense oligos produced none of the effects of tectal cPLA2 inhibition. Finally, if AA is the retrograde messenger, the application of exogenous AA to the tectum should reverse the increased branch turnover caused by blocking either NMDARs or cPLA2. In both cases, intraventricular injection of AA stabilized the overall branch dynamics, bringing rates down below the normal values. The results suggest that AA generated postsynaptically by cPLA2 downstream of Ca2+ entry through NMDARs acts as a retrograde signal to regulate the dynamic growth of retinal arbors. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation

DEVELOPMENTAL NEUROBIOLOGY, Issue 6 2006
Chi Wai Lee
Abstract During vertebrate neuromuscular junction (NMJ) development, presynaptic motor axons differentiate into nerve termini enriched in synaptic vesicles (SVs). At the nerve terminal, mitochondria are also concentrated, but how mitochondria become localized at these specialized domains is poorly understood. This process was studied in cultured Xenopus spinal neurons with mitochondrion-specific probe MitoTracker and SV markers. In nerve-muscle cocultures, mitochondria were concentrated stably at sites where neurites and muscle cells formed NMJs, and mitochondria coclustered with SVs where neurites were focally stimulated by beads coated with growth factors. Labeling with a mitochondrial membrane potential-dependent probe JC-1 revealed that these synaptic mitochondria were with higher membrane potential than the extrasynaptic ones. At early stages of bead-stimulation, actin-based protrusions and microtubule fragmentation were observed in neurites at bead contact sites, suggesting the involvement of cytoskeletal dynamics and rearrangement during presynaptic differentiation. Treating the cultures with an actin polymerization blocker, latrunculin A (Ltn A), almost completely abolished the formation of actin-based protrusions and partially inhibited bead-induced mitochondrial and SV clustering, whereas the microtubule disrupting agent nocodazole was ineffective in inhibiting the clustering of mitochondria and SVs. Lastly, in contrast to Ltn A, which blocked bead-induced clustering of both mitochondria and SVs, the ser/thr phosphatase inhibitor okadaic acid inhibited SV clustering but not mitochondrial clustering. These results suggest that at developing NMJs, synaptogenic stimuli induce the clustering of mitochondria together with SVs at presynaptic terminals in an actin cytoskeleton-dependent manner and involving different intracellular signaling molecules. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Calmodulin and profilin coregulate axon outgrowth in Drosophila

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001
You-Seung Kim
Abstract Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 26,38, 2001 [source]


Emerging topics in Reelin function

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2010
Eckart Förster
Abstract Reelin signalling in the early developing cortex regulates radial migration of cortical neurons. Later in development, Reelin promotes maturation of dendrites and dendritic spines. Finally, in the mature brain, it is involved in modulating synaptic function. In recent years, efforts to identify downstream signalling events induced by binding of Reelin to lipoprotein receptors led to the characterization of novel components of the Reelin signalling cascade. In the present review, we first address distinct functions of the Reelin receptors Apoer2 and Vldlr in cortical layer formation, followed by a discussion on the recently identified downstream effector molecule n-cofilin, involved in regulating actin cytoskeletal dynamics required for coordinated neuronal migration. Next, we discuss possible functions of the recently identified Reelin,Notch signalling crosstalk, and new aspects of the role of Reelin in the formation of the dentate radial glial scaffold. Finally, progress in characterizing the function of Reelin in modulating synaptic function in the adult brain is summarized. The present review has been inspired by a session entitled ,Functions of Reelin in the developing and adult hippocampus', held at the Spring Hippocampal Research Conference in Verona/Italy, June 2009. [source]


A common cortactin gene variation confers differential susceptibility to severe asthma

GENETIC EPIDEMIOLOGY, Issue 8 2008
Shwu-Fan Ma
Abstract Genomic regions with replicated linkage to asthma-related phenotypes likely harbor multiple susceptibility loci with relatively minor effects on disease susceptibility. The 11q13 chromosomal region has repeatedly been linked to asthma with five genes residing in this region with reported replicated associations. Cortactin, an actin-binding protein encoded by the CTTN gene in 11q13, constitutes a key regulator of cytoskeletal dynamics and contractile cell machinery, events facilitated by interaction with myosin light chain kinase; encoded by MYLK, a gene we recently reported as associated with severe asthma in African Americans. To evaluate potential association of CTTN gene variation with asthma susceptibility, CTTN exons and flanking regions were re-sequenced in 48 non-asthmatic multiethnic samples, leading to selection of nine tagging polymorphisms for case-control association studies in individuals of European and African descent. After ancestry adjustments, an intronic variant (rs3802780) was significantly associated with severe asthma (odds ratio [OR]: 1.71; 95% confidence interval [CI]: 1.20,2.43; p=0.003) in a joint analysis. Further analyses evidenced independent and additive effects of CTTN and MYLK risk variants for severe asthma susceptibility in African Americans (accumulated OR: 2.93, 95% CI: 1.40,6.13, p=0.004). These data suggest that CTTN gene variation may contribute to severe asthma and that the combined effects of CTTN and MYLK risk polymorphisms may further increase susceptibility to severe asthma in African Americans harboring both genetic variants. Genet. Epidemiol. 2008. © 2008 Wiley-Liss, Inc. [source]


Leupaxin Is a Critical Adaptor Protein in the Adhesion Zone of the Osteoclast,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003
Anandarup Gupta
Abstract Leupaxin is a cytoskeleton adaptor protein that was first identified in human macrophages and was found to share homology with the focal adhesion protein, paxillin. Leupaxin possesses several protein-binding domains that have been implicated in targeting proteins such as focal adhesion kinase (pp125FAK) to focal adhesions. Leupaxin can be detected in monocytes and osteoclasts, both cells of hematopoietic origin. We have identified leupaxin to be a component of the osteoclast podosomal signaling complex. We have found that leupaxin in murine osteoclasts is associated with both PYK2 and pp125FAK in the osteoclast. Treatment of osteoclasts with TNF-, and soluble osteopontin were found to stimulate tyrosine phosphorylation of both leupaxin and leupaxin-associated PYK2. Leupaxin was found to co-immunoprecipitate with the protein tyrosine phosphatase PTP-PEST. The cellular distribution of leupaxin, PYK2, and protein tyrosine phosphorylation-PEST co-localized at or near the osteoclast podosomal complex. Leupaxin was also found to associate with the ARF-GTPase-activating protein, paxillin kinase linker p95PKL, thereby providing a link to regulators of cytoskeletal dynamics in the osteoclast. Overexpression of leupaxin by transduction into osteoclasts evoked numerous cytoplasmic projections at the leading edge of the cell, resembling a motile phenotype. Finally, in vitro inhibition of leupaxin expression in the osteoclast led to a decrease in resorptive capacity. Our data suggest that leupaxin may be a critical nucleating component of the osteoclast podosomal signaling complex. [source]


Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004
L. Formigli
We have previously shown that sphingosine 1-phosphate (S1P) can induce intracellular Ca2+ mobilization and cell contraction in C2C12 myoblasts and that the two phenomena are temporally unrelated. Although Ca2+ -independent mechanisms of cell contraction have been the focus of numerous studies on Ca2+ sensitization of smooth muscle, comparatively less studies have focused on the role that these mechanisms play in the regulation of skeletal muscle contractility. Phosphorylation and activation of myosin by Rho-dependent kinase mediate most of Ca2+ -independent contractile responses. In the present study, we examined the potential role of Rho/Rho-kinase cascade activation in S1P-induced C2C12 cell contraction. First, we showed that depletion of Ca2+, by pre-treatment with BAPTA, did not affect S1P-induced myoblastic contractility, whereas it abolished S1P-induced Ca2+ transients. These results correlated with the absence of troponin C and with the immature cytoskeletal organization of these cells. Experimental evidence demonstrating the involvement of Rho pathway in S1P-stimulated myoblast contraction included: the activation/translocation of RhoA to the membrane in response to agonist-stimulation in cells depleted of Ca2+ and the inhibition of dynamic changes of the actin cytoskeleton in cells where Rho functions had been inhibited either by overexpression of RhoGDI, a physiological inhibitor of GDP dissociation from Rho proteins, or by pretreatment with Y-27632, a specific Rho kinase inhibitor. Contribution of protein kinase C in this cytoskeletal rearrangement was also evaluated. However, the pretreatment with Gö6976 or rottlerin, specific inhibitors of PKC, and PKC,, respectively, failed to inhibit the agonist-induced myoblastic contraction. Single particle tracking of G-actin fluorescent probe was performed to statistically evaluate actin cytoskeletal dynamics in response to S1P. Stimulation with S1P was also able to increase the phosphorylation level of myosin light chain II. In conclusion, our results strongly suggest that Ca2+ -independent/Rho-Rho kinase-dependent pathways may exert an important role in S1P-induced myoblastic cell contraction. J. Cell. Physiol. 198: 1,11, 2004© 2003 Wiley-Liss, Inc. [source]


Wiskott,Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells

THE JOURNAL OF PATHOLOGY, Issue 4 2004
Yolanda Calle
Abstract The regulated migration and spatial localization of dendritic cells in response to environmental signals are critical events during the initiation of physiological immune responses and maintenance of tolerance. Cells deficient in the Wiskott,Aldrich syndrome protein (WASP) have been used to demonstrate the importance of the dynamic remodelling of the actin-based cytoskeleton during the selective adhesion and migration of these cells. Unlike most cell types, macrophages, dendritic cells, and osteoclasts utilize a specialized adhesive array termed the podosome in order to migrate. Podosomes are composed of many of the same structural and regulatory proteins as seen in the more commonly found focal adhesion, but are unique in their requirement for WASP. Without WASP, podosomes cannot form and the affected cells are obliged to use focal adhesions for their migratory activities. Once activated by a series of upstream regulatory proteins, WASP acts as a scaffold for the binding of the potent actin nucleating protein complex known as Arp2/3. This article reviews the available evidence that suggests that failures in the regulation of the actin cytoskeleton may contribute significantly to the immunopathology of the Wiskott,Aldrich syndrome. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Prostaglandin E2 is activated by airway injury and regulates fibroblast cytoskeletal dynamics,

THE LARYNGOSCOPE, Issue 7 2009
Vlad C. Sandulache MD
Abstract Objectives/Hypothesis: To characterize the activation of cyclooxygenase (COX)-2/prostaglandin (PG) E2 signaling during airway mucosal repair and its subsequent role during the wound healing process. Study Design: Prospective animal study. Methods: The subglottis was approached via cricothyroidotomy. Sham airways were closed, and wounded airways were subjected to laser injury and closed. Subglottic tissue was harvested at 12 hours, 24 hours, 48 hours, and 72 hours postinjury. Secretions were collected preoperatively and at time of sacrifice. Inflammatory gene expression was analyzed using quantitative reverse transcriptase polymerase chain reaction. Subglottic/tracheal explants were exposed to exogenous IL-1, in the presence or absence of COX inhibitors. Explant-produced PGE2 levels were assayed using enzyme linked immunoassays. Human airway fibroblast migration and collagen contraction were assayed in the presence or absence of prostaglandin E2. Results: Laser injury triggers a rapid, dose-dependent increase in mucosal IL-1, and COX-2 gene expression, with an anatomical distribution proportional to the distance from the site of injury. Gene upregulation correlates with dose-dependent increases in PGE2 mucosal secretion levels. Ex vivo analysis indicates IL-1, is responsible for the activation of the COX-2 / PGE2 pathway. Prostaglandin E2 differentially inhibits airway fibroblast migration and contraction in a specific, dose-dependent manner. Conclusions: PGE2 is activated during mucosal inflammation and acts to decrease fibroplastic activity in the mucosal wound bed. During subglottic stenosis (SGS) development, the levels of PGE2 generated in response to injury may be insufficient to blunt the intrinsically fibroplastic phenotype of SGS fibroblasts, resulting in excessive scarring. Laryngoscope, 2009 [source]


Dendritic cells from spondylarthritis-prone HLA,B27,transgenic rats display altered cytoskeletal dynamics, class II major histocompatibility complex expression, and viability

ARTHRITIS & RHEUMATISM, Issue 9 2009
Maarten Dhaenens
Objective Spondylarthritis (SpA) is characterized by spinal and peripheral joint inflammation, frequently combined with extraarticular manifestations. Despite the well-established association of SpA with the class I major histocompatibility complex (MHC) allele HLA,B27, there are still different, parallel hypotheses on the relationship between HLA,B27 and disease mechanisms. The present study was undertaken to investigate several characteristics of mature dendritic cells (DCs), which are believed to be essential for triggering disease in a model of SpA in HLA,B27,transgenic rats. Methods We combined different whole-proteome approaches (2-dimensional polyacrylamide gel electrophoresis and iTRAQ) to define the most aberrant molecular processes occurring in spleen DCs. Videomicroscopy and flow cytometry were used to confirm both cytoskeletal and class II MHC expression deficiencies. Results Our proteome studies provided evidence of up-regulation of proteins involved in class I MHC loading, and unfolded protein response, along with a striking down-regulation of several cytoskeleton-reorganizing proteins. The latter result was corroborated by findings of deficient motility, altered morphology, and decreased immunologic synapse formation. Furthermore, class II MHC surface expression was reduced in DCs from B27-transgenic rats, and this could be linked to differences in class II MHC,induced apoptotic sensitivity. Finally, we found reduced viability of the CD103+CD4, DC subpopulation, which likely exerts tolerogenic function. Conclusion Taken together, our findings have different important implications regarding the physiology of B27-transgenic rat DCs, which have a putative role in spontaneous disease in these rats. In particular, the reduced motility and viability of putatively tolerogenic CD4+ DCs could play an important role in initiating the inflammatory process, resulting in SpA. [source]


An insider's guide to the microtubule cytoskeleton of Giardia

CELLULAR MICROBIOLOGY, Issue 5 2010
Scott C. Dawson
Summary Giardia intestinalis is a zoonotic, parasitic protist with a complex microtubule cytoskeleton critical for motility, attachment, intracellular transport, cell division and transitioning between its two life cycle stages , the cyst and the trophozoite. This review focuses on the structures of the primary elements of the microtubule cytoskeleton and cytoskeletal dynamics throughout this complex giardial life cycle. The giardial cytoskeleton has both highly dynamic elements and more stable MT structures, including several novel structures like the ventral disc that change conformation via unknown mechanisms. While our knowledge of the giardial cytoskeleton is primarily cytological, the completed Giardia genome and recently developed reverse genetic tools affords an opportunity to uncover the mechanisms of Giardia's cytoskeletal dynamics. Fundamental areas of giardial cytoskeletal biology remain to be explored, including high resolution imaging and compositional characterization of cytoskeletal structures required for elucidating the molecular mechanisms of cytoskeletal functioning. [source]