Cytoprotective Effects (cytoprotective + effects)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Cytoprotective Effects of a Cyclic RGD Peptide in Steatotic Liver Cold Ischemia and Reperfusion Injury

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009
C. Fondevila
The serious need for expanding the donor population has attracted attention to the use of steatotic donor livers in orthotopic liver transplantation (OLT). However, steatotic livers are highly susceptible to hepatic ischemia,reperfusion injury (IRI). Expression of fibronectin (FN) by endothelial cells is an important feature of hepatic response to injury. We report the effect of a cyclic RGD peptide with high affinity for the ,5,1, the FN integrin receptor, in a rat model of steatotic liver cold ischemia, followed by transplantation. RGD peptide therapy ameliorated steatotic IRI and improved the recipient survival rate. It significantly inhibited the recruitment of monocyte/macrophages and neutrophils, and depressed the expression of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and interferon (IFN)-,. Moreover, it resulted in profound inhibition of metalloproteinase-9 (MMP-9) expression, a gelatinase implied in leukocyte migration in damaged livers. Finally, we show that RGD peptide therapy reduced the expression of the 17-kDa active caspase-3 and the number of apoptotic cells in steatotic OLTs. The observed protection against steatotic liver IRI by the cyclic RGD peptides with high affinity for the ,5,1 integrin suggests that this integrin is a potential therapeutic target to allow the successful utilization of marginal steatotic livers in transplantation. [source]


Biliverdin therapy protects rat livers from ischemia and reperfusion injury

HEPATOLOGY, Issue 6 2004
Constantino Fondevila
Heme oxygenase (HO-1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate-limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was designed to explore putative cytoprotective functions of BV during hepatic IRI in rat liver models of ex vivo perfusion and orthotopic liver transplantation (OLT) after prolonged periods of cold ischemia. In an ex vivo hepatic IRI model, adjunctive BV improved portal venous blood flow, increased bile production, and decreased hepatocellular damage. These findings were correlated with amelioration of histological features of IRI, as assessed by Suzuki's criteria. Following cold ischemia and syngeneic OLT, BV therapy extended animal survival from 50% in untreated controls to 90% to 100%. This effect correlated with improved liver function and preserved hepatic architecture. Additionally, BV adjuvant after OLT decreased endothelial expression of cellular adhesion molecules (P-selectin and intracellular adhesion molecule 1), and decreased the extent of infiltration by neutrophils and inflammatory macrophages. BV also inhibited expression of inducible nitric oxide synthase and proinflammatory cytokines (interleukin 1,, tumor necrosis factor ,, and interleukin 6) in OLTs. Finally, BV therapy promoted an increased expression of antiapoptotic molecules independently of HO-1 expression, consistent with BV being an important mediator through which HO-1 prevents cell death. In conclusion, this study documents and dissects potent cytoprotective effects of BV in well-established rat models of hepatic IRI. Our results provide the rationale for a novel therapeutic approach using BV to maximize the function and thus the availability of donor organs. (HEPATOLOGY 2004;40:1333,1341.) [source]


Role of MAPK phosphorylation in cytoprotection by pro-vitamin C against oxidative stress-induced injuries in cultured cardiomyoblasts and perfused rat heart

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2003
Masahiro Eguchi
Abstract The reactive oxygen species (ROS) are known to be generated upon post-ischemic reperfusion (I/R) of the heart, and to injure cardiac muscle cells. The hydrogen peroxide-induced mortality of rat cardiomyoblasts H2c9 was markedly inhibited by previous administration with auto-oxidation-resistant pro-vitamin C, the 2- O -phosphorylated derivative (Asc2P) of ascorbic acid (Asc). The cytoprotection was partially counteracted by an inhibitor of MAPK (mitogen-activated protein kinase) kinase (MEK) as shown by DNA strand cleavage assay and mitochondrial dehydrogenase assay. Immunostains indicated that phosphorylated MAPK increased in the hydrogen peroxide-treated cardiomyoblasts, and that this action was moderately inhibited by Asc2P and restored nearly to the initial, pretreatment level by combined administration of the MEK inhibitor and Asc2P. The I/R-induced cell injuries in perfused rat hearts as estimated by extracellular release of the cardiac enzyme CPK were inhibited by 2- O -,-glucosylascorbic acid (Asc2G) and Asc, whereas the observed cytoprotection for the cardiomyoblasts was partially counteracted by the MEK inhibitor. The increase in phosphorylated MAPK in I/R-operated hearts was moderately inhibited by pro-vitamin C, but restored nearly to the normal non-operated level by combined administration with the MEK inhibitor. This is in contrast to no alteration in levels of non-phosphorylated MAPK for all the cases examined as shown by Western blots, consistent with results of immunostains for the cardiomyoblasts. The inhibitory effect of the MEK inhibitor on MAPK phosphorylation was, therefore, suggested to counteract the cytoprotective effects of pro-vitamin C via a thorough interruption of the phosphorylated MAPK signaling pathway. This was not true of ROS-related events; the scavenging effects of Asc2G and Asc on hydroxyl radicals generated from I/R-operated heart were not affected by combined administration with the MEK inhibitor, as shown by the spin-trapping DMPO-based ESR method. J. Cell. Biochem. 90: 219,226, 2003. © 2003 Wiley-Liss, Inc. [source]


Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cells

JOURNAL OF NEUROCHEMISTRY, Issue 3 2005
Ya-Ting Yang
Abstract Compromised mitochondrial function in neurons and glia has been observed in several neurodegenerative disorders, including Huntington's disease and Alzheimer's disease. Chemical/hypoxic preconditioning may afford protection against subsequently more severe oxidative damages. In this study, we tested whether induction of hypoxia inducible factor-1 (HIF-1) may exert cytoprotective effects against mitochondrial dysfunction caused by 3-nitropropionic acid (3-NP) in glial cells. Preconditioning of C6 astroglial cells with cobalt chloride, mimosine (MIM), and desferrioxamine (DFO), all of which known to activate HIF-1, significantly attenuated cytotoxicity induced by 3-NP, an irreversible inhibitor of mitochondrial complex II, and antimycin A, a mitochondrial complex III inhibitor. Application of cadmium chloride capable of neutralizing cobalt-induced HIF-1 activation, HIF-specific oligodeoxynucleotide (ODN) decoy, and antisense phosphorothioate ODN against HIF-1, abolished the protective effect mediated by preconditioning with cobalt chloride. Preloading of C6 cells with SN50, PD98059, or SB202190, the respective inhibitor of nuclear factor-,B (NF-,B), p44/p42 extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK), failed to affect the protection afforded by cobalt preconditioning. Taken together, these results suggest that HIF-1 induction secondary to preconditioning with cobalt chloride or iron chelators may mediate the protective effects against metabolic insult induced by the mitochondrial inhibitor 3-NP in C6 astroglial cells. [source]


The cytoprotective effects of addition of activated protein C into preservation solution on small-for-size grafts in rats

LIVER TRANSPLANTATION, Issue 1 2010
Naohisa Kuriyama
Small-for-size liver grafts are a serious obstacle for partial orthotopic liver transplantation. Activated protein C (APC), a potent anticoagulant serine protease, is known to have cell-protective properties due to its anti-inflammatory and antiapoptotic activities. This study was designed to examine the cytoprotective effects of a preservation solution containing APC on small-for-size liver grafts, with special attention paid to ischemia-reperfusion injury and shear stress in rats. APC exerted cytoprotective effects, as evidenced by (1) increased 7-day graft survival; (2) decreased initial portal pressure and improved hepatic microcirculation; (3) decreased levels of aminotransferase and improved histological features of hepatic ischemia-reperfusion injury; (4) suppressed infiltration of neutrophils and monocytes/macrophages; (5) reduced hepatic expression of tumor necrosis factor , and interleukin 6; (6) decreased serum levels of hyaluronic acid, which indicated attenuation of sinusoidal endothelial cell injury; (7) increased hepatic levels of nitric oxide via up-regulated hepatic endothelial nitric oxide synthesis expression together with down-regulated hepatic inducible nitric oxide synthase expression; (8) decreased hepatic levels of endothelin 1; and (9) reduced hepatocellular apoptosis by down-regulated caspase-8 and caspase-3 activities. These results suggest that a preservation solution containing APC is a potential novel and safe product for small-for-size liver transplantation, alleviating graft injury via anti-inflammatory and antiapoptotic effects and vasorelaxing conditions. Liver Transpl 16:1,11, 2010. © 2009 AASLD. [source]


Effects of tacrolimus on ischemia-reperfusion injury

LIVER TRANSPLANTATION, Issue 2 2003
Shawn D. St. Peter
In addition to efficacious immunosuppression for the benefit of organ transplantation, tacrolimus has diverse actions that result in amelioration of ischemia-reperfusion injury. Knowledge is accumulating rapidly on the mechanisms through which tacrolimus exerts these cytoprotective effects, including alterations in microcirculation, free radical metabolism, calcium-activated pathways, inflammatory cascades, mitochondrial stability, apoptosis, stress-response proteins, and tissue recovery. Within the nucleus, actions mediating the effects of tacrolimus appear to be dominantly influenced by interactions with the transcription factor, nuclear factor-,B. Because tacrolimus is a cornerstone agent in immunosuppression regimens throughout the world and knowledge of its cellular mechanisms is evolving, it is important to update the clinical literature with this information. We reviewed the published literature with intent to portray the interactions of tacrolimus in the intricate cellular mechanisms initiated by ischemia and reperfusion. [source]


The many faces of nitric oxide: cytotoxic, cytoprotective or both

NEUROGASTROENTEROLOGY & MOTILITY, Issue 7 2007
J. W. Wiley
Abstract, Nitric oxide (NO) has emerged as a major modulator of cellular function in health and disease. In addition to its well-known role as a mediator of smooth muscle relaxation, a rapidly developing body of research suggests, paradoxically, that NO can have both cytotoxic and cytoprotective effects. In this issue of Neurogastroenterology and Motility, Choi et al. provide evidence that supports NO has a prosurvival effect on interstitial cells of Cajal in the mouse stomach. The objective of this short review is to place this interesting report in the context of the current literature. [source]


Effect of green tea and (-)-epigallocatechin gallate on ethanol-induced toxicity in HepG2 cells

PHYTOTHERAPY RESEARCH, Issue 5 2008
Sang Il Lee
Abstract Despite the continuing reports supporting the hepatoprotective effects of green tea against ethanol intoxication, there remain controversies regarding the active compound(s) and molecular mechanism. These issues were addressed in the present study using cultured HepG2 cells exposed to a lethal dose of ethanol. Gamma-glutamyl transferase (GGT) was chosen as a marker of ethanol toxicity because it is widely used in clinics. When the cells were treated with ethanol at various concentrations, there was a dose-dependent increase of GGT activity in the culture media and loss of cell viability. Pretreatment of the cells with green tea extract attenuated the changes significantly. Among the green tea constituents, (-)-epigallocatechin gallate (EGCG) attenuated the ethanol cytotoxicity effectively, whereas l -theanine and caffeine had no effects. The ethanol cytotoxicity was also attenuated by alcohol dehydrogenase inhibitor 4-methyl pyrazol and GGT inhibitor acivicin as well as by thiol modulators such as S -adenosyl- l -methionine, N -acetyl- l -cysteine and glutathione. EGCG failed to prevent the intracellular glutathione loss caused by ethanol, but it appeared to be a strong GGT inhibitor. Therefore the cytoprotective effects of green tea could be attributed to the inhibition of GGT activity by EGCG. This study suggests that GGT inhibitors including EGCG may provide a novel strategy for attenuating ethanol-induced liver damage. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes.

PHYTOTHERAPY RESEARCH, Issue 7 2004
Part III.
Abstract Flavonoids are found universally in plants and act as free radical scavenging and chelating agents with antiin,ammatory, antiischemic, vasodilating and chemoprotective properties. In this study, the antilipoperoxidative and cytoprotective effects of apigenin, baicalein, kaempferol, luteolin and quercetin against doxorubicin-induced oxidative stress were investigated in isolated rat heart cardiac myocytes, mitochondria and microsomes. After preincubation of cardiomyocytes with the test compounds for 1 h the cardiomyocytes were treated with the toxic agent, doxorubicin (100 µM for 8 h). Cardiomyocyte protection was assessed by extracellular LDH and cellular ADP and ATP production. Cytoprotection was concentration dependent for baicalein > luteolin , apigenin > quercetin > kaempferol. All test compounds had signi,cantly better protective effects than dexrazoxan, an agent currently used for adjuvant therapy during anthracycline antibiotic therapy. In microsomes/mitochondria the IC50 values of lipid peroxidation inhibition for quercetin, baicalein, kaempferol, luteolin, and apigenin were 3.1 ± 0.2/8.2 ± 0.6, 3.3 ± 0.3/9.6 ± 0.5, 3.9 ± 0.3/10.1 ± 0.8, 22.9 ± 1.7/18.2 ± 0.7, and 338.8 ± 23.1/73.1 ± 6.4 mM, respectively. The antilipoperoxidative activity of apigenin differed from its cytoprotective effects, but correlated with the free radical scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and half peak oxidation potential (Ep/2). Apigenin was the least effective of the ,avonoids studied in all models except the cardiomyocyte model where its cardiomyocyte cytoprotective effect was comparable to other compounds. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Effect of Neural Stem Cells on Apoptosis of PC12 Cells Induced by Serum Deprivation

BIOTECHNOLOGY PROGRESS, Issue 4 2007
Xiangqin Li
Neural stem cells (NSCs) have a bright application prospect to be used to treat neurodegenerative diseases due to their capacity to give rise to the appropriate cell types when they are grafted. At present, however, the function of NSCs after transplantation is not quite ensured, whether to replace the degenerative cells or to secrete nutrient factors. On the other hand, pheochromocytoma cell line 12 (PC12) cells have been widely used for investigating Parkinsonapos;s disease (PD) since their apoptosis is similar to that of dopaminergic neuron cells. Therefore, the possible cytoprotective effects of NSCs on the apoptosis of PC12 cells induced by serum deprivation were investigated in this paper. PC12 cells were cocultured with NSCs in DMEM/F12 medium free of serum, and their morphologies, viabilities, and survival were observed with an inverted microscope and assessed with a CCK-8 assay. In addition, the concentrations of glial derived neurotrophic factor (GDNF) in different medium were detected with a GDNF Elisa kit, and the mechanism of NSCapos;s protective effect on PC12 cell apoptosis induced by serum deprivation was analyzed. The results showed that (1) PC12 cell apoptosis induced by serum deprivation increased with time, and only about 44.25% PC12 cells survived after 72 h; (2) NSCs culture medium protected against PC12 cell apoptosis insignificantly; (3) NSCs' supernatant and NSCs mildly prevented PC12 cells from apoptosis; (4) the amount of GDNF secreted by NSCs increased after the coculture with the apoptotic PC12 cells induced by serum deprivation. It can be concluded that there exists clear interaction between NSCs and apoptotic PC12 cells, and that GDNF secretion from NSCs is one of the important mechanisms to prevent the apoptosis of PC12 cells. [source]


Valproate activates the Notch3/c-FLIP signaling cascade: a strategy to attenuate white matter hyperintensities in bipolar disorder in late life?

BIPOLAR DISORDERS, Issue 3 2009
Peixiong Yuan
Objectives:, Increased prevalence of deep white matter hyperintensities (DWMHs) has been consistently observed in patients with geriatric depression and bipolar disorder. DMWHs are associated with chronicity, disability, and poor quality of life. They are thought to be ischemic in their etiology and may be related to the underlying pathophysiology of mood disorders in the elderly. Notably, these lesions strikingly resemble radiological findings related to the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephelopathy (CADASIL) syndrome. CADASIL arises from mutations in Notch3, resulting in impaired signaling via cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein (c-FLIP) through an extracellular signal-regulated kinase (ERK)-dependent pathway. These signaling abnormalities have been postulated to underlie the progressive degeneration of vascular smooth muscle cells (VSMC). This study investigates the possibility that the anticonvulsant valproate (VPA), which robustly activates the ERK mitogen-activated protein kinase (MAPK) cascade, may exert cytoprotective effects on VSMC through the Notch3/c-FLIP pathway. Methods:, Human VSMC were treated with therapeutic concentrations of VPA subchronically. c-FLIP was knocked down via small interfering ribonucleic acid transfection. Cell survival, apoptosis, and protein levels were measured. Results:, VPA increased c-FLIP levels dose- and time-dependently and promoted VSMC survival in response to Fas ligand-induced apoptosis in VSMC. The anti-apoptotic effect of VPA was abolished by c-FLIP knockdown. VPA also produced similar in vivo effects in rat brain. Conclusions:, These results raise the intriguing possibility that VPA may be a novel therapeutic agent for the treatment of CADASIL and related disorders. They also suggest that VPA might decrease the liability of patients with late-life mood disorders to develop DWMHs. [source]


Protective mechanisms of activated protein C in severe inflammatory disorders

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2009
Arne P Neyrinck
The protein C system is an important natural anticoagulant mechanism mediated by activated protein C (APC) that regulates the activity of factors VIIIa and Va. Besides well-defined anticoagulant properties, APC also demonstrates anti-inflammatory, anti-apoptotic and endothelial barrier-stabilizing effects that are collectively referred to as the cytoprotective effects of APC. Many of these beneficial effects are mediated through its co-receptor endothelial protein C receptor, and the protease-activated receptor 1, although exact mechanisms remain unclear and are likely pleiotropic in nature. Increased insight into the structure,function relationships of APC facilitated design of APC variants that conserve cytoprotective effects and reduce anticoagulant features, thereby attenuating the risk of severe bleeding with APC therapy. Impairment of the protein C system plays an important role in acute lung injury/acute respiratory distress syndrome and severe sepsis. The pathophysiology of both diseases states involves uncontrolled inflammation, enhanced coagulation and compromised fibrinolysis. This leads to microvascular thrombosis and organ injury. Administration of recombinant human APC to correct the dysregulated protein C system reduced mortality in severe sepsis patients (PROWESS trial), which stimulated further research into its mechanisms of action. Several other clinical trials evaluating recombinant human APC have been completed, including studies in children and less severely ill adults with sepsis as well as a study in acute lung injury. On the whole, these studies have not supported the use of APC in these populations and challenge the field of APC research to search for additional answers. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 [source]