Cytoplasmic Genome (cytoplasmic + genome)

Distribution by Scientific Domains


Selected Abstracts


CYTONUCLEAR INTERACTIONS CAN FAVOR THE EVOLUTION OF GENOMIC IMPRINTING

EVOLUTION, Issue 5 2009
Jason B. Wolf
Interactions between cytoplasmic (generally organelle) and nuclear genomes may be relatively common and could potentially have major fitness consequences. As in the case of within-genome epistasis, this cytonuclear epistasis can favor the evolutionary coadaptation of high-fitness combinations of nuclear and cytoplasmic alleles. Because cytoplasmic factors are generally uniparentally inherited, the cytoplasmic genome is inherited along with only one of the nuclear haplotypes, and therefore, coadaptation is expected to evolve through the interaction of these coinherited (usually maternally inherited) genomes. Here I show that, as a result of this coinheritance of the two genomes, cytonuclear epistasis can favor the evolution of genomic imprinting such that, when the cytoplasmic factor is maternally inherited, selection favors maternal expression of the nuclear locus and when the factor is paternally inherited selection favors paternal expression. Genomic imprinting evolves in this model because it leads to a pattern of gene expression in the nuclear haplotype that is coadapted with (i.e., adaptively coordinated with) gene expression in the coinherited cytoplasmic genome. [source]


CYTO-NUCLEAR EPISTASIS: TWO-LOCUS RANDOM GENETIC DRIFT IN HERMAPHRODITIC AND DIOECIOUS SPECIES

EVOLUTION, Issue 4 2006
Michael J. Wade
Abstract We report the findings of our theoretical investigation of the effect of random genetic drift on the covariance of identity-by-descent (ibd) of nuclear and cytoplasmic genes. The covariance in ibd measures of the degree to which cyto-nuclear gene combinations are heritable, that is, transmitted together from parents to offspring. We show how the mating system affects the covariance of ibd, a potentially important aspect of host-pathogen or host-symbiont coevolution. The magnitude of this covariance influences the degree to which the evolution of apparently neutral cytoplasmic genes, often used in molecular phylogenetics, might be influenced by selection acting on unlinked nuclear genes. To the extent that cyto-nuclear gene combinations are inherited together, genomic conflict is mitigated and intergenomic transfer it facilitated, because genes in both organelle and nuclear genomes share the same evolutionary fate. The covariance of ibd also affects the rate at which cyto-nuclear epistatic variance is converted to additive variance necessary for a response to selection. We find that conversion is biased in species with separate sexes, so that the increment of additive variance added to the nuclear genome exceeds that added to the cytoplasmic genome. As a result, the host might have an adaptive advantage in a coevolutionary arms race with vertically (maternally) transmitted pathogens. Similarly, the nuclear genome could be a source of compensatory mutations for its organellar genomes, as occurs in cytoplasmic male sterility in some plant species. We also discuss the possibility that adaptive cytoplasmic elements, such as favorable mitochondrial mutations or endosymbionts (e.g., Wolbachia), have the potential to release heritable nuclear variation as they sweep through a host population, supporting the view that cytoplasmic introgression plays an important role in adaptation and speciation. [source]


Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers

ECOLOGY LETTERS, Issue 10 2008
Julianno B. M. Sambatti
Abstract Despite the recent renaissance in studies of ecological speciation, the connection between ecological selection and the evolution of reproductive isolation remains tenuous. We tested whether habitat adaptation of cytoplasmic genomes contributes to the maintenance of reproductive barriers in hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris. We transplanted genotypes of the parental species, reciprocal F1 hybrids and all eight possible backcross combinations of nuclear and cytoplasmic genomes into the contrasting xeric and mesic habitats of the parental species. Analysis of survivorship across two growing seasons revealed that the parental species' cytoplasms were strongly locally adapted and that cytonuclear interactions (CNIs) significantly affected the fitness and architecture of hybrid plants. A significant fraction of the CNIs have transgenerational effects, perhaps due to divergence in imprinting patterns. Our results suggest a common means by which ecological selection may contribute to speciation and have significant implications for the persistence of hybridizing species. [source]


The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies

MOLECULAR ECOLOGY, Issue 2 2000
B. Desplanque
Abstract The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR,RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale. [source]


Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana

THE PLANT JOURNAL, Issue 5 2010
Michaël Moison
Summary In recent years Arabidopsis thaliana has become a model species for genomic variability and adaptation studies. Although impressive quantities of data have been gathered on the nuclear genomic diversity of this species, little has been published regarding its cytoplasmic diversity. We analyzed the diversity of plastid (pt) and mitochondrial (mt) genomes among 95 accessions, covering most Arabidopsis geographic origins. Four intergenic regions of the pt genome were sequenced, and a total of 68 polymorphisms and 65 pt haplotypes were identified. Several strategies were developed to identify mt polymorphisms among a subset of 14 accessions. Fifteen polymorphisms were further developed as PCR-based markers and used to analyze the whole set of 95 accessions. Using statistical parsimony, we built pt and mt phylogenetic networks of haplotype groups. To root the pt network, the pt intergenic regions of two related Arabidopsis species, Arabidopsis lyrata and Arabidopsis arenosa, were also sequenced. The mt and pt phylogenies are highly congruent and could be combined into a single cytoplasmic phylogeny. To estimate whether co-adaptation between nuclear and cytoplasmic genomes exists in A. thaliana, we tested the germination capacity in challenging conditions of 27 pairs of reciprocal F2 families. We found that the cytoplasm donor had a significant effect on the germination capacity of some F2 families. [source]