Cytochrome Oxidase (cytochrome + oxidase)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Cytochrome Oxidase

  • cytochrome oxidase i
  • cytochrome oxidase i gene
  • cytochrome oxidase subunit
  • cytochrome oxidase subunit i

  • Selected Abstracts


    ,-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2002
    C. S. Casley
    Abstract Disrupted energy metabolism, in particular reduced activity of cytochrome oxidase (EC 1.9.3.1), ,-ketoglutarate dehydrogenase (EC 1.2.4.2) and pyruvate dehydrogenase (EC 1.2.4.1) have been reported in post-mortem Alzheimer's disease brain. ,-Amyloid is strongly implicated in Alzheimer's pathology and can be formed intracellularly in neurones. We have investigated the possibility that ,-amyloid itself disrupts mitochondrial function. Isolated rat brain mitochondria have been incubated with the ,-amyloid alone or together with nitric oxide, which is known to be elevated in Alzheimer's brain. Mitochondrial respiration, electron transport chain complex activities, ,-ketoglutarate dehydrogenase activity and pyruvate dehydrogenase activity have been measured. ,-Amyloid caused a significant reduction in state 3 and state 4 mitochondrial respiration that was further diminished by the addition of nitric oxide. Cytochrome oxidase, ,-ketoglutarate dehydrogenase and pyruvate dehydrogenase activities were inhibited by ,-amyloid. The Km of cytochrome oxidase for reduced cytochrome c was raised by ,-amyloid. We conclude that ,-amyloid can directly disrupt mitochondrial function, inhibits key enzymes and may contribute to the deficiency of energy metabolism seen in Alzheimer's disease. [source]


    Social experience organizes parallel networks in sensory and limbic forebrain

    DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2007
    Eun-Jin Yang
    Abstract Successful social behavior can directly influence an individual's reproductive success. Therefore, many organisms readily modify social behavior based on past experience. The neural changes induced by social experience, however, remain to be fully elucidated. We hypothesize that social modulation of neural systems not only occurs at the level of individual nuclei, but also of functional networks, and their relationships with behavior. We used the green anole lizard (Anolis carolinensis), which displays stereotyped, visually triggered social behaviors particularly suitable for comparisons of multiple functional networks in a social context, to test whether repeated aggressive interactions modify behavior and metabolic activity in limbic,hypothalamic and sensory forebrain regions, assessed by quantitative cytochrome oxidase (a slowly accumulating endogenous metabolic marker) histochemistry. We found that aggressive interactions potentiate aggressive behavior, induce changes in activities of individual nuclei, and organize context-specific functional neural networks. Surprisingly, this experiential effect is not only present in a limbic,hypothalamic network, but also extends to a sensory forebrain network directly relevant to the behavioral expression. Our results suggest that social experience modulates organisms' social behavior via modifying sensory and limbic neural systems in parallel both at the levels of individual regions and networks, potentially biasing perceptual as well as limbic processing. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


    PRECLINICAL STUDY: Ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A

    ADDICTION BIOLOGY, Issue 2 2009
    Ema Alves
    ABSTRACT The administration of a neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ,ecstasy') to the rat results in mitochondrial oxidative damage in the central nervous system, namely lipid and protein oxidation and mitochondrial DNA deletions with subsequent impairment of the correspondent protein expression. Although these toxic effects were shown to be prevented by monoamine oxidase B inhibition, the role of monoamine oxidase A (MAO-A) in MDMA-mediated mitochondrial damage remains to be evaluated. Thus, the aim of the present study was to clarify the potential interference of a specific inhibition of MAO-A by clorgyline, on the deleterious effects produced by a binge administration of a neurotoxic dose of MDMA (10 mg MDMA/kg of body weight, intraperitoneally, every 2 hours in a total of four administrations) to an adolescent rat model. The parameters evaluated were mitochondrial lipid peroxidation, protein carbonylation and expression of the respiratory chain protein subunits II of reduced nicotinamide adenine dinucleotide dehydrogenase (NDII) and I of cytochrome oxidase (COXI). Considering that hyperthermia has been shown to contribute to the neurotoxic effects of MDMA, another objective of the present study was to evaluate the body temperature changes mediated by MDMA with a MAO-A selective inhibition by clorgyline. The obtained results demonstrated that the administration of a neurotoxic binge dose of MDMA to an adolescent rat model previously treated with the specific MAO-A inhibitor, clorgyline, resulted in synergistic effects on serotonin- (5-HT) mediated behaviour and body temperature, provoking high mortality. Inhibition of MAO-A by clorgyline administration had no protective effect on MDMA-induced alterations on brain mitochondria (increased lipid peroxidation, protein carbonylation and decrease in the expression of the respiratory chain subunits NDII and COXI), although it aggravated MDMA-induced decrease in the expression of COXI. These results reinforce the notion that the concomitant use of MAO-A inhibitors and MDMA is counter indicated because of the resulting severe synergic toxicity. [source]


    Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2004
    Maria Antonietta Pellegrino
    Beta-agonists and glucocorticoids are frequently coprescribed for chronic asthma treatment. In this study the effects of 4 week treatment with beta-agonist clenbuterol (CL) and glucocorticoid dexamethasone (DEX) on respiratory (diaphragm and parasternal) and limb (soleus and tibialis) muscles of the mouse were studied. Myosin heavy chain (MHC) distribution, fibres cross sectional area (CSA), glycolytic (phosphofructokinase, PFK; lactate dehydrogenase, LDH) and oxidative enzyme (citrate synthase, CS; cytochrome oxidase, COX) activities were determined. Muscle samples were obtained from four groups of adult C57/B16 mice: (1) Control (2) Mice receiving CL (CL, 1.5 mg kg,1 day,1 in drinking water) (3) Mice receiving DEX (DEX, 5.7 mg kg,1 day,1s.c.) (4) Mice receiving both treatments (DEX + CL). As a general rule, CL and DEX showed opposite effects on CSA, MHC distribution, glycolytic and mitochondrial enzyme activities: CL alone stimulated a slow-to-fast transition of MHCs, an increase of PFK and LDH and an increase of muscle weight and fibre CSA; DEX produced an opposite (fast-to-slow transition) change of MHC distribution, a decrease of muscle weight and fibre CSA and in some case an increase of CS. The response varied from muscle to muscle with mixed muscles, as soleus and diaphragm, being more responsive than fast muscles, as tibialis and parasternal. In combined treatments (DEX + CL), the changes induced by DEX or CL alone were generally minimized: in soleus, however, the effects of CL predominated over those of DEX, whereas in diaphragm DEX prevailed over CL. Taken together the results suggest that CL might counteract the unwanted effects on skeletal muscles of chronic treatment with glucocorticoids. [source]


    Photoinduced intracomplex electron transfer between cytochrome c oxidase and TUPS-modified cytochrome c

    FEBS JOURNAL, Issue 18 2000
    Alexander Kotlyar
    A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6,8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6,8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of ,,17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed. [source]


    Isolation of a Carnobacterium maltaromaticum- like bacterium from systemically infected lake whitefish (Coregonus clupeaformis)

    FEMS MICROBIOLOGY LETTERS, Issue 1 2008
    Thomas P. Loch
    Abstract Herein we report on the first isolation of a Carnobacterium maltaromaticum -like bacterium from kidneys and swim bladders of lake whitefish (Coregonus clupeaformis) caught from Lakes Michigan and Huron, Michigan. Isolates were Gram-positive, nonmotile, facultatively anaerobic, asporogenous rods that did not produce catalase, cytochrome oxidase, or H2S, and did not grow on acetate agar. Except for carbohydrate fermentation, many phenotypic characteristics of lake whitefish isolates coincided with those of C. maltaromaticum, the causative agent of pseudokidney disease. Partial sequencing of 16S and 23S rRNA genes, as well as the piscicolin 126 precursor gene, yielded 97% and 98% nucleotide matches with C. maltaromaticum, respectively (accession numbers EU546836 and EU546837; EU643471). Phylogenetic analyses showed that lake whitefish isolates of this study are highly related, yet not fully identical to C. maltaromaticum. The presence of the C. maltaromaticum -like bacterium was associated with splenomegaly, renal and splenic congestion, and thickening of the swim bladder wall with accumulation of a mucoid exudate. Examination of stained tissue sections revealed renal and splenic congestion, vacuolation and bile stasis within the liver, and hyperplasia within the epithelial lining of the swim bladder. The concurrent presence of pathological changes and the C. maltaromaticum -like bacteria suggests that this bacterium is pathogenic to lake whitefish. [source]


    Nitric Oxide, Mitochondria, and Cell Death

    IUBMB LIFE, Issue 3-5 2001
    Guy C. Brown
    Abstract NO or its derivatives (reactive nitrogen species: RNS) have three types of actions on mitochondria: 1) reversible inhibition of mitochondrial respiration at cytochrome oxidase by NO, and irreversible inhibition at multiple sites by RNS; 2) stimulation of mitochondrial production of superoxide, hydrogen peroxide, and peroxynitrite by NO; and 3) induction of mitochondrial permeability transition (MPT) by RNS. Similarly there are three main roles of mitochondria in NO-induced cell death: a) NO inhibition of respiration can induce necrosis (or excitotoxicity in neurons) and inhibit apoptosis if glycolysis is insufficient to compensate, b) RNS- or oxidant-induced signal transduction or DNA damage may activate the mitochondrial pathway to apoptosis, and c) RNS-induced MPT may induce apoptosis or necrosis. [source]


    Mitochondrial Production of Hydrogen Peroxide Regulation by Nitric Oxide and the Role of Ubisemiquinone

    IUBMB LIFE, Issue 4-5 2000
    Alberto Boveris
    Abstract Mitochondria are considered the major cellular site for hydrogen peroxide production, a process that is kinetically controlled by the availability of oxygen and nitric oxide to cytochrome oxidase and of ADP to F1-ATPase. The multisite regulation of mi1 tochondrial respiration and energy-transducing pathways support a critical regulatory role of mitochondrion in cell signaling pathways. The cellular steady-state levels of hydrogen peroxide and the role of mitochondria in maintaining these levels are reviewed. [source]


    ,-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2002
    C. S. Casley
    Abstract Disrupted energy metabolism, in particular reduced activity of cytochrome oxidase (EC 1.9.3.1), ,-ketoglutarate dehydrogenase (EC 1.2.4.2) and pyruvate dehydrogenase (EC 1.2.4.1) have been reported in post-mortem Alzheimer's disease brain. ,-Amyloid is strongly implicated in Alzheimer's pathology and can be formed intracellularly in neurones. We have investigated the possibility that ,-amyloid itself disrupts mitochondrial function. Isolated rat brain mitochondria have been incubated with the ,-amyloid alone or together with nitric oxide, which is known to be elevated in Alzheimer's brain. Mitochondrial respiration, electron transport chain complex activities, ,-ketoglutarate dehydrogenase activity and pyruvate dehydrogenase activity have been measured. ,-Amyloid caused a significant reduction in state 3 and state 4 mitochondrial respiration that was further diminished by the addition of nitric oxide. Cytochrome oxidase, ,-ketoglutarate dehydrogenase and pyruvate dehydrogenase activities were inhibited by ,-amyloid. The Km of cytochrome oxidase for reduced cytochrome c was raised by ,-amyloid. We conclude that ,-amyloid can directly disrupt mitochondrial function, inhibits key enzymes and may contribute to the deficiency of energy metabolism seen in Alzheimer's disease. [source]


    A mitochondrial phylogeography of Brachidontes variabilis (Bivalvia: Mytilidae) reveals three cryptic species

    JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2007
    M. Sirna Terranova
    Abstract This study examined genetic variation across the range of Brachidontes variabilis to produce a molecular phylogeography. Neighbour joining (NJ), minimum evolution (ME) and maximum parsimony (MP) trees based on partial mitochondrial DNA sequences of 16S-rDNA and cytochrome oxidase (COI) genes revealed three monophyletic clades: (1) Brachidontes pharaonis s.l. from the Mediterranean Sea and the Red Sea; (2) B. variabilis from the Indian Ocean; (3) B. variabilis from the western Pacific Ocean. Although the three clades have never been differentiated by malacologists employing conventional morphological keys, they should be ascribed to the taxonomic rank of species. The nucleotide divergences between Brachidontes lineages (between 10.3% and 23.2%) were substantially higher than the divergence between congeneric Mytilus species (2.3,6.7%) and corresponded to interspecific divergences found in other bivalvia, indicating that they should be considered three different species. Analysis of the 16S-rDNA sequences revealed heteroplasmy, indicating dual uniparental inheritance (DUI) of mtDNA in the species of Brachidontes collected in the Indian Ocean, but not in the species in the Pacific nor in the species in the Red Sea and the Mediterranean Sea. When we employed the conventional estimate of the rate of mitochondrial sequence divergence (2% per million years), the divergence times for the three monophyletic lineages were 6,11 Myr for the Indian Ocean and Pacific Ocean Brachidontes sp. and 6.5,9 Myr for the Red Sea and Indian Ocean Brachidontes sp. Thus, these species diverged from one another during the Miocene (23.8,5.3 Myr). We infer that a common ancestor of the three Brachidontes species probably had an Indo-Pacific distribution and that vicariance events, linked to Pleistocene glaciations first and then to the opening of the Red Sea, produced three monophyletic lineages. Riassunto Lo studio filogeografico è stato condotto su tutto l'areale di Brachidontes variabilis (Krauss, 1848) attraverso l'analisi di sequenze mitocondriali (16S-rDNA e COI) che hanno separato i campioni in tre cladi monofiletici. Diversi algoritmi (NJ, ME e MP) hanno elaborato alberi con la stessa topologia, in cui è possibile riconoscere: (1) Brachidontes pharaonis s.l. dell'area Mar Mediterraneo , Mar Rosso; (2) Brachidontes variabilis dell' Oceano Indiano; (3) Brachidontesvariabilis dell'Oceano Pacifico. Il loro grado di divergenza è sufficientemente alto da potere ascrivere al rango di specie i singoli cladi, nonostante non siano stati ancora individuati i caratteri tassonomici distintivi, a causa della grande variazione morfologica. La divergenza nucleotidica tra le tre linee di Brachidontes era compresa tra 10.3% e 23.2%, in un range di valori superiori a quelli trovati nel confronto tra specie congeneriche di Mytilus sp (2.3,6.7%). Utilizzando il tasso evolutivo, che convenzionalmente viene applicato ai valori di divergenza genetica di geni mitocondriali (2% per milioni di anni), si sono ricavati tempi di divergenza corrispondenti a 6,11 milioni di anni tra Oceano Indiano e Pacifico, e a 6.5,9 milioni di anni tra Mar Rosso e Oceano Indiano. Le tre linee evolutive sembrano essersi separate durante il Miocene. Probabilmente un comune antenato con distribuzione Indo-Pacifica può essere andato incontro a processi di vicarianza e/o di dispersione legati alle glaciazioni pleistoceniche prima e all'apertura del Mar Rosso dopo. [source]


    Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium

    MOLECULAR ECOLOGY RESOURCES, Issue 2009
    SCOTT R. GILMORE
    Abstract Using data from published mitochondrial or complete genomes, we developed and tested primers for amplification and sequencing of the barcode region of cytochrome oxidase 1 (COX1) of the fungal genus Fusarium, related genera of the order Hypocreales, and degenerate primers for fungi in the subdivision Pezizomycotina. The primers were successful for amplifying and sequencing COX1 barcodes from 13 genera of Hypocreales (Acremonium, Beauveria, Clonostachys, Emericellopsis, Fusarium, Gliocladium, Hypocrea, Lanatonectria, Lecanicillium, Metarhizium, Monocillium, Neonectria and Stilbella), 22 taxa of Fusarium, and two genera in other orders (Arthrosporium, Monilochaetes). Parologous copies of COX1 occurred in several strains of Fusarium. In some, copies of the same length were detected either by heterozygous bases in otherwise clean sequences or in different replicates of amplification and sequencing events; this may indicate multiple transcribed copies. Other strains included one or two introns. Two intron insertion sites had at least two nonhomologous intron sequences among Fusarium species. Irrespective of whether the multiple copy issue could be resolved by sequencing RNA transcripts, developing a precise COX1 -based barcoding system for Fusarium may not be feasible. The overall divergence among homologous COX1 sequences obtained so far is rather low, with many species sharing identical sequences. [source]


    Feeding ecology of Xenoturbella bocki (phylum Xenoturbellida) revealed by genetic barcoding

    MOLECULAR ECOLOGY RESOURCES, Issue 1 2008
    SARAH J. BOURLAT
    Abstract The benthic marine worm Xenoturbella is frequently contaminated with molluscan DNA, which had earlier caused confusion resulting in a suggested bivalve relationship. In order to find the source of the contaminant, we have used molluscan sequences derived from Xenoturbella and compared them to barcodes obtained from several individuals of the nonmicroscopic molluscs sharing the same environment as Xenoturbella. Using cytochrome oxidase 1, we found the contaminating sequences to be 98% similar to the bivalve Ennucula tenuis. Using the highly variable D1,D2 region of the large ribosomal subunit in Xenoturbella, we found three distinct species of contaminating molluscs, one of which is 99% similar to the bivalve Abra nitida, one of the most abundant bivalves in the Gullmarsfjord where Xenoturbella was found, and another 99% similar to the bivalve Nucula sulcata. These data clearly show that Xenoturbella only contains molluscan DNA originating from bivalves living in the same environment, refuting former hypotheses of a bivalve relationship. In addition, these data suggest that Xenoturbella feeds specifically on bivalve prey from multiple species, possibly in the form of eggs and larvae. [source]


    Original Article: Long-term stability of thyroid hormones and DNA in blood spots kept under varying storage conditions

    PEDIATRICS INTERNATIONAL, Issue 4 2010
    Asmahan A. EL Ezzi
    Abstract Background:, Congenital hypothyroidism is screened using blood spotted on filter paper that may be transported from remote areas to central testing facilities. However, storage conditions and transportation may affect sample quality. Methods:, We examined long-term stability of thyroid-stimulating hormone (TSH) and thyroxin (TT4) in blood spotted on filter paper, which was stored at room temperature (RT), 4°C and ,20°C under continuous or intermittent power supply (six hours on and six hours off around the clock.) Hormone levels in the discs were measured periodically for up to ten years. Extraction of DNA from blood spots and polymerase chain reaction were performed. Results:, Our results showed that TT4 was stable for up to 6.1, 5.34 and 5.16 years when stored at ,20°C, 4°C and RT, respectively. TSH was stable for up to 2.7 years at RT, and for up to 6.5 and 4.1 years when stored at ,20°C and 4°C, respectively, under continuous power supply. However, under intermittent power supply, TSH was stable for up to 3.8 and 2.5 years when stored at 4°C and ,20°C, respectively. Mitochondrial cytochrome oxidase and sex-determining region of Y chromosome genes were successfully amplified from DNA extracted from the blood spots. Conclusion:, Our data indicate that TT4 and TSH are most stable in blood spots stored at ,20°C under continuous power supply. However, they can be stored at RT or at 4°C and ,20°C under interrupted power supply for at least 2.5 years. Moreover, the DNA extracted from the blood spots was intact and suitable for genetic studies. [source]


    Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX

    PHYSIOLOGIA PLANTARUM, Issue 1 2010
    Challabathula Dinakar
    The present study shows the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under high light (HL). The responses of photosynthesis and respiration were monitored as O2 evolution and O2 uptake in mesophyll protoplasts of pea pre-incubated under different light intensities. Under HL (3000 µmol m,2 s,1), mesophyll protoplasts showed remarkable decrease in the rates of NaHCO3 -dependent O2 evolution (indicator of photosynthetic carbon assimilation), while decrease in the rates of respiratory O2 uptake were marginal. While the capacity of AOX pathway increased significantly by two fold under HL, the capacity of cytochrome oxidase (COX) pathway decreased by >50% compared with capacities under darkness and normal light (NL). Further, the total cellular levels of pyruvate and malate, which are assimilatory products of active photosynthesis and stimulators of AOX activity, were increased remarkably parallel to the increase in AOX protein under HL. Upon restriction of AOX pathway using salicylhydroxamic acid (SHAM), the observed decrease in NaHCO3 -dependent O2 evolution or p -benzoquinone (BQ)-dependent O2 evolution [indicator of photosystem II (PSII) activity] and the increase in total cellular levels of pyruvate and malate were further aggravated/promoted under HL. The significance of raised malate and pyruvate levels in activation of AOX protein/AOX pathway, which in turn play an important role in dissipating excess chloroplastic reducing equivalents and sustenance of photosynthetic carbon assimilation to balance the effects of HL stress on photosynthesis, was depicted as a model. [source]


    Temperature responses are a window to the physiology of dark respiration: differences between CO2 release and O2 reduction shed light on energy conservation

    PLANT CELL & ENVIRONMENT, Issue 7 2008
    JÖRG KRUSE
    ABSTRACT We showed that temperature responses of dark respiration for foliage of Pinus radiata could be approximated by Arrhenius kinetics, whereby E0 determines shape of the exponential response and denotes overall activation energy of respiratory metabolism. Reproducible and predictable deviation from strict Arrhenius kinetics depended on foliage age, and differed between RCO2 and RO2. Inhibition of oxygen reduction (RO2) by cyanide (inhibiting COX) or SHAM (inhibiting AOX) resulted in reproducible changes of the temperature sensitivity for RO2, but did not affect RCO2. Enthalpic growth , preservation of electrons in anabolic products , could be approximated with knowledge of four variables: activation energies (E0) for both RCO2 and RO2, and basal rates of respiration at a low reference temperature (RREF). Rates of enthalpic growth by P. radiata needles were large in spring due to differences between RREF of oxidative decarboxylation and that of oxygen reduction, while overall activation energies for the two processes were similar. Later during needle development, enthalpic growth was dependent on differences between E0 for RCO2 as compared with RO2, and increased E0(RO2) indicated greater contributions of cytochrome oxidase to accompany the switch from carbohydrate sink to source. Temperature-dependent increments in stored energy can be calculated as the difference between RCO2,HCO2 and RO2,HO2. [source]


    Primary structure of a novel subunit in ba3 -cytochrome oxidase from thermus thermophilus

    PROTEIN SCIENCE, Issue 11 2000
    Tewfik Soulimane
    Abstract The ba3 -type cytochrome c oxidase from Thermus thermophilus is known as a two subunit enzyme. Deduced from the crystal structure of this enzyme, we discovered the presence of an additional transmembrane helix "subunit IIa" spanning the membrane. The hydrophobic N-terminally blocked protein was isolated in high yield using high-performance liquid chromatography. Its complete amino acid sequence was determined by a combination of automated Edman degradation of both the deformylated and the cyanogen bromide cleaved protein and automated C-terminal sequencing of the native protein. The molecular mass of 3,794 Da as determined by MALDI-MS and by ESI requires the N-terminal methionine to be formylated and is in good agreement with the value calculated from the formylmethionine containing sequence (3,766.5 Da + 28 Da = 3,794.5 Da). This subunit consits of 34 residues forming one helix across the membrane (Lys5-Ala34), which corresponds in space to the first transmembrane helix of subunit II of the cytochrome c oxidases from Paracoccus denitrificans and bovine heart, however, with opposite polarity. It is 35% identical to subunit IV of the ba3 -cytochrome oxidase from Natronobacterium pharaonis. The open reading frame encoding this new subunit IIa (cbaD) is located upstream of cbaB in the same operon as the genes for subunit I (cbaA) and subunit II (cbaB). [source]


    Somatosensory Nuclei of the Manatee Brainstem and Thalamus

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2007
    Diana K. Sarko
    Abstract Florida manatees have an extensive, well-developed system of vibrissae distributed over their entire bodies and especially concentrated on the face. Although behavioral and anatomical assessments support the manatee's reliance on somatosensation, a systematic analysis of the manatee thalamus and brainstem areas dedicated to tactile input has never been completed. Using histochemical and histological techniques (including stains for myelin, Nissl, cytochrome oxidase, and acetylcholinesterase), we characterized the relative size, extent, and specializations of somatosensory regions of the brainstem and thalamus. The principal somatosensory regions of the brainstem (trigeminal, cuneate, gracile, and Bischoff's nucleus) and the thalamus (ventroposterior nucleus) were disproportionately large relative to nuclei dedicated to other sensory modalities, providing neuroanatomical evidence that supports the manatee's reliance on somatosensation. In fact, areas of the thalamus related to somatosensation (the ventroposterior and posterior nuclei) and audition (the medial geniculate nucleus) appeared to displace the lateral geniculate nucleus dedicated to the subordinate visual modality. Furthermore, it is noteworthy that, although the manatee cortex contains Rindenkerne (barrel-like cortical nuclei located in layer VI), no corresponding cell clusters were located in the brainstem ("barrelettes") or thalamus ("barreloids"). Anat Rec, 290:1138,1165, 2007. © 2007 Wiley-Liss, Inc. [source]


    Mitochondrial formation of reactive oxygen species

    THE JOURNAL OF PHYSIOLOGY, Issue 2 2003
    Julio F. Turrens
    The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2,,). Even though O2,, is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants. [source]


    A new genus of trans-Tasman midge: Anzacladius gen. n. (Diptera: Chironomidae: Orthocladiinae)

    AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2009
    Peter S Cranston
    Abstract Based on larvae, pupae and adults of Australian and New Zealand Orthocladiinae (Chironomidae) midges, a genus new to science, Anzacladius, is described. Two species, A. numbat Cranston sp. n. and A. kangaroo Cranston sp. n., are described from temperate Australia (both western and south-eastern). A. kiwi Cranston sp. n. is described from both North and South Islands, New Zealand: association of the pharate pupa with its putative larva used sequence similarity of the CO1 (cytochrome oxidase 1) gene. Pupal exuviae, the major stage for species recognition, show the genus occurs in running waters, especially in Australian acidic and sandy-bedded creeks, and Anzacladius species are found also in perched lakes of Queensland's Cooloolla region and Fraser Island. Previous morphological phylogenetic studies (under the code ,SO3') indicate a relationship to austral genera Botryocladius Cranston & Edward, Naonella Boothroyd and Echinocladius Cranston. [source]


    Impaired Energy Metabolism after Co-Exposure to Leadand Ethanol

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2005
    Suresh Kumar Verma
    One such factor, ethanol, might affect the neurotoxicity of lead by regulating its absorption and distribution. However, there is little information regarding the possible biochemical mechanism by which ethanol might be affecting the state of neuronal functions in lead-exposed individuals. Therefore, the present investigation involved the effect of alcohol (3 g/kg body weight, intragastrically, for 8 weeks) on lead-induced (50 mg/kg body weight, intragastrically, for 8 weeks) mitochondrial dysfunction in adult rat brain. Ethanol was found to enhance the toxic effects of lead in terms of decreased cellular energy reserves (ATP levels). Co-exposure to lead and ethanol caused marked decline in the rate of mitochondrial respiration as compared to lead alone. Further the activies of various components of the electron transport chain, viz. NADH dehydrogenase, succinate dehydrogenase and cytochrome oxidase depicted a significant decrease in the lead and ethanol co-exposed rats as compared to the lead-treated group. The results of the present study reflect that ethanol makes adult rat brain more vulnerable to the neurotoxic effects of lead in terms of altered mitochondrial energy metabolism. [source]


    Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae)

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
    SANTIAGO R. RAMÍREZ
    The orchid bees constitute a clade of prominent insect pollinators distributed throughout the Neotropical region. Males of all species collect fragrances from natural sources, including flowers, decaying vegetation and fungi, and store them in specialized leg pockets to later expose during courtship display. In addition, orchid bees provide pollination services to a diverse array of Neotropical angiosperms when foraging for food and nesting materials. However, despite their ecological importance, little is known about the evolutionary history of orchid bees. Here, we present a comprehensive molecular phylogenetic analysis based on ,4.0 kb of DNA from four loci [cytochrome oxidase (CO1), elongation factor 1-, (EF1 -,), arginine kinase (ArgK) and RNA polymerase II (Pol-II)] across the entire tribe Euglossini, including all five genera, eight subgenera and 126 of the approximately 200 known species. We investigated lineage diversification using fossil-calibrated molecular clocks and the evolution of morphological traits using disparity-through-time plots. In addition, we inferred past biogeographical events by implementing model-based likelihood methods. Our dataset supports a new view on generic relationships and indicates that the cleptoparasitic genus Exaerete is sister to the remaining orchid bee genera. Our divergence time estimates indicate that extant orchid bee lineages shared a most recent common ancestor at 27,42 Mya. In addition, our analysis of morphology shows that tongue length and body size experienced rapid disparity bursts that coincide with the origin of diverse genera (Euglossa and Eufriesea). Finally, our analysis of historical biogeography indicates that early diversification episodes shared a history on both sides of Mesoamerica, where orchid bees dispersed across the Caribbean, and through a Panamanian connection, thus reinforcing the hypothesis that recent geological events (e.g. the formation of the isthmus of Panama) contributed to the diversification of the rich Neotropical biota. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 552,572. [source]


    Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2003
    SUSANNE SCHULMEISTER
    Molecular characters are analysed on their own and in combination with morphological data to examine the phylogenetic relationships of the basal lineages of Hymenoptera (,Symphyta'). This study covers 47 sawfly genera and nine apocritan families and includes molecular sequences from five genes , 12S, 16S, 18S and 28S ribosomal genes and cytochrome oxidase 1 , as well as 343 morphological characters. A robust-choice sensitivity analysis is performed with the data. First, the simultaneous analysis is repeated three times, each time employing a different step matrix for weighting the transformations of the molecular characters. Then, the results of all three simultaneous analyses are summarized in a strict consensus in order to avoid basing the conclusions on a narrow set of assumptions. This methodology is discussed in the paper. The relationships among superfamilies largely confirm previous hypotheses, being (Xyeloidea (Tenthredinoidea s.l. (Pamphilioidea (Cephoidea (Siricoidea (Xiphydrioidea (Orussoidea Apocrita))))))), where Siricoidea is understood as Siricidae+Anaxyelidae. However, the relationships within Tenthredinoidea s.s. proposed here are novel: ({Argidae Pergidae}[Athalia{(Diprionidae Cimbicidae) Tenthredinidae minus Athalia}]). © 2003 The Linnean Society of London. Biological Journal of the Linnean Society, 2003, 79, 245,275. [source]


    Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays

    FEMS MICROBIOLOGY LETTERS, Issue 2 2005
    Apichai Tuanyok
    Abstract Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation. [source]


    Gene expression profile analysis of regenerating liver after portal vein ligation in rats by a cDNA microarray system

    LIVER INTERNATIONAL, Issue 3 2004
    Y Nagano
    Abstract: Aims: We assessed changes in gene expression of hypertrophied liver after portal vein ligation (PL) in a test group of rats compared to a control group, which had the same size liver but no PL. Methods: The portal veins of the left and median lobes in the test group were ligated in an initial operation. Four days after the PL, the liver volume of the posterior caudate lobe (5%) increased two-fold and comprised 10% of the liver. A 90% hepatectomy was then performed, leaving only the hypertrophied posterior caudate lobe, and leaving the normal anterior and posterior caudate lobes (10%) in the control (sham) group. A comparison of the expression profiles between two groups was performed using cDNA microarrays and the hepatic ATP level was measured. Results: The survival rate for the PL group was significantly higher than for the sham group at 4 days after the hepatectomy (56.3% and 26.7%, P<0.05). Gene expression of cyclin D1, proliferating cell nuclear antigen, cyclin A and B was upregulated, and the cyclin-dependent kinase inhibitor was downregulated. Increases were observed in: (i) pyruvate dehydrogenase, the tricarboxylic acid cycle cycle regulator, (ii) acyl-CoA dehydrogenase, the oxidation regulator, and (iii) cytochrome oxidases, the oxidative phosphorylation regulator. Hepatic ATP concentration after hepatectomy was better maintained in the PL group than in the sham group (0.48±0.01 ,mol/ml vs. 0.33±0.01 ,mol/ml, P<0.05). Conclusion: The regenerating liver increased tolerance for extended hepatectomy compared to normal liver. It is believed that this is because the induced rapid regeneration of the remaining liver after hepatectomy increases ATP metabolism. [source]