Home About us Contact | |||
Cytochrome C Reduction (cytochrome + c_reduction)
Selected AbstractsDapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent mannerBRITISH JOURNAL OF DERMATOLOGY, Issue 5 2005T. Suda Summary Background, Dapsone (4,4,-diaminodiphenyl sulphone) is a powerful therapeutic tool in many skin diseases including neutrophilic dermatoses. The drug has an outstanding therapeutic efficacy against many skin diseases characterized by neutrophil-rich infiltrates; however, mechanisms of its action are poorly understood. Objectives, We investigated the effects of dapsone on respiratory and secretory functions of human neutrophils triggered by the chemotactic peptide N -formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), the physiological agonist C5a, and phorbol myristate acetate (PMA). Methods, Human neutrophils were isolated from venous blood obtained from healthy donors. We detected extracellular production of superoxide (O2,) by cytochrome C reduction assay, and intracellular production of O2, by flow cytometry. Neutrophil elastase release was measured by the cleavage of the specific elastase substrate N -methoxysuccinyl-Ala-Ala-Pro-Val- p -nitroanilide. Measurement of cytosolic free calcium concentration was performed using the calcium-reactive fluorescence probe, Fluo-3. Results, Dapsone suppressed intra- and extracellular production of O2, and elastase release triggered by fMLP and C5a, but not by PMA. Both fMLP and C5a signalled the above pathways by inducing calcium influx, but PMA functions bypassed calcium influx. Dapsone was capable of antagonizing the induction of calcium influx. Conclusions, These findings suggest that one mechanism of the anti-inflammatory action of dapsone is inhibition of calcium-dependent functions of neutrophils including release of tissue-damaging oxidants and proteases in the affected skin. [source] Evidence for redox cycling of lawsone (2-hydroxy-1,4-naphthoquinone) in the presence of the hypoxanthine/xanthine oxidase systemJOURNAL OF APPLIED TOXICOLOGY, Issue 4 2003A. M. Osman Abstract This study reports that lawsone (2-hydroxy-1,4-naphthoquinone) undergoes redox cycling in the presence of the hypoxanthine/xanthine oxidase system. The rate of cytochrome c reduction obtained in the presence of 80 µM lawsone was almost three times the rate of cytochrome c reduction measured in its absence. This increase in the rate of cytochrome c reduction was partially inhibited by superoxide dismutase, suggesting the involvement of O2,, in this process. It is remarkable to note that, even though lawsone is considered to be a non-redox-cycling quinone in vitro, this quinone was shown to be more toxic in vivo in rats than menadione, causing haemolytic anemia of an oxidative nature and renal damage. The view that this quinone is a non-redox-cycling quinone was based on the inability of one-electron-transferring ,avoenzymes such as NADPH-cytochrome c reductase to reduce this naphthoquinone. Our ,nding that lawsone, like menadione, undergoes redox cycling in the presence of the hypoxanthine/xanthine oxidase system could explain the observed oxidative damage of tissues in,icted by this quinone in rats in vivo. Such an observation therefore reconciles the in vivo toxicity results of this naphthoquinone with those of in vitro experiments. Copyright © 2003 John Wiley & Sons, Ltd. [source] Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: Role of p42/44 mitogen-activated protein kinase and reactive oxygen species,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2001Zhonglin Xie Using spontaneously hypertensive and aortic banded rats, we have shown that expression of myocardial osteopontin, an extracellular matrix protein, coincides with the development of heart failure and is inhibited by captopril, suggesting a role for angiotensin II (ANG II). This study tested whether ANG II induces osteopontin expression in adult rat ventricular myocytes and cardiac microvascular endothelial cells (CMEC), and if so, whether induction is mediated via activation of mitogen-activated protein kinases (p42/44 MAPK) and involves reactive oxygen species (ROS). ANG II (1 ,M, 16 h) increased osteopontin expression (fold increase 3.3±0.34, n,=,12, P,<,0.01) in CMEC as measured by northern analysis, but not in ARVM. ANG II stimulated osteopontin expression in CMEC in a time- (within 4 h) and concentration-dependent manner, which was prevented by the AT1 receptor antagonist, losartan. ANG II elicited robust phosphorylation of p42/44 MAPK as measured using phospho-specific antibodies, and increased superoxide production as measured by cytochrome c reduction and lucigenin chemiluminescence assays. These effects were blocked by diphenylene iodonium (DPI), an inhibitor of the flavoprotein component of NAD(P)H oxidase. PD98059, an inhibitor of p42/44 MAPK pathway, and DPI each inhibited ANG II-stimulated osteopontin expression. Northern blot analysis showed basal expression of p22phox, a critical component of NADH/NADPH oxidase system, which was increased 40,60% by exposure to ANG II. These results suggest that p42/44 MAPK is a critical component of the ROS-sensitive signaling pathways activated by ANG II in CMEC and plays a key role in the regulation of osteopontin gene expression. Published 2001 Wiley-Liss, Inc. [source] Effects of areca nut extracts on the functions of human neutrophils in vitroJOURNAL OF PERIODONTAL RESEARCH, Issue 4 2000Shan-Ling Hung Aqueous extracts of ripe areca nut without husk (ripe ANE) and fresh and tender areca nut with husk (tender ANE) were examined for their effects on the defensive functions of human neutrophils. Exposure of peripheral blood neutrophils to ripe ANE and tender ANE inhibited their bactericidal activity against oral pathogens, including Actinobacillus actinomycetemcomitans and Streptococcus mutans, in a dose-dependent manner. At the concentrations tested, ripe and tender ANEs did not significantly affect the viability of neutrophils as verified by their ability to exclude trypan blue dye. However, both ANEs inhibited the production of bactericidal superoxide anion by neutrophils as measured by cytochrome c reduction. Moreover, the ripe ANE inhibited neutrophils more effectively than did tender ANE. Arecoline, a major alkaloid of areca nut, only exhibited an inhibitory effect on the functions of neutrophils when high concentrations were used. Therefore, arecoline could not be used to explain the inhibitory effects observed for ANEs. In conclusion, our results demonstrated that ripe and tender ANEs reduced the antibacterial activity and the superoxide anion production of neutrophils. This effect may contribute to a less efficient elimination of bacteria from the periodontal environment. Inhibition of the antimicrobial functions of neutrophils may alter the microbial ecology of the oral cavity, and this may be one possible mechanism by which areca nut compromises the oral health of users of areca nut products. [source] Mosquito NADPH-cytochrome P450 oxidoreductase: kinetics and role of phenylalanine amino acid substitutions at leu86 and leu219 in CYP6AA3-mediated deltamethrin metabolismARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2010Songklod Sarapusit Abstract The NADPH-cytochrome P450 oxidoreductase (CYPOR) enzyme is a membrane-bound protein and contains both FAD and FMN cofactors. The enzyme transfers two electrons, one at a time, from NADPH to cytochrome P450 enzymes to function in the enzymatic reactions. We previously expressed in Escherichia coli the membrane-bound CYPOR (flAnCYPOR) from Anopheles minimus mosquito. We demonstrated the ability of flAnCYPOR to support the An. minimus CYP6AA3 enzyme activity in deltamethrin degradation in vitro. The present study revealed that the flAnCYPOR purified enzyme, analyzed by a fluorometric method, readily lost its flavin cofactors. When supplemented with exogenous flavin cofactors, the activity of flAnCYPOR-mediated cytochrome c reduction was increased. Mutant enzymes containing phenylalanine substitutions at leucine residues 86 and 219 were constructed and found to increase retention of FMN cofactor in the flAnCYPOR enzymes. Kinetic study by measuring cytochrome c,reducing activity indicated that the wild-type and mutant flAnCYPORs followed a non-classical two-site Ping-Pong mechanism, similar to rat CYPOR. The single mutant (L86F or L219F) and double mutant (L86F/L219F) flAnCYPOR enzymes, upon reconstitution with the An. minimus cytochrome P450 CYP6AA3 and a NADPH-regenerating system, increased CYP6AA3-mediated deltamethrin degradation compared to the wild-type flAnCYPOR enzyme. The increased enzyme activity could illustrate a more efficient electron transfer of AnCYPOR to CYP6AA3 cytochrome P450 enzyme. Addition of extra flavin cofactors could increase CYP6AA3-mediated activity supported by wild-type and mutant flAnCYPOR enzymes. Thus, both leucine to phenylalanine substitutions are essential for flAnCYPOR enzyme in supporting CYP6AA3-mediated metabolism. © 2010 Wiley Periodicals, Inc. [source] Activity of NADPH-Cytochrome P-450 Reductase of the Human Heart, Liver and Lungs in the Presence of (-)-Epigallocatechin Gallate, Quercetin and Resveratrol: An in vitro StudyBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2005Jaroslaw Dudka The enzyme is also involved in the toxicity of some clinically important antitumour drugs (doxorubicin) and pesticides (paraquat). P-450 reductase activates them to their more toxic metabolites via one electron reduction which triggers free radical cascade. In some cases however, such transformation is essential to produce therapeutic effect in anticancer drugs. The main purpose of the paper was to evaluate the effect of three natural compounds found in human diet: (-)-epigallocatechin gallate (EGCG), quercetin and resveratrol on P-450 reductase activity. The activity of the enzyme was determined spectrophotometrically by measurement of the rate of cytochrome c reduction at 550 nm, in vitro, using human heart, liver and lung microsomes. It was found that quercetin increased the P-450 reductase activity in human organs at all tested doses. The activity of microcosms in all organs was enhanced according to the concentrations of quercetin, which increased the activity in the order lung>heart>liver. Addition of EGCG to the reaction mixture enhanced the P-450 reductase activity in the following order: liver>heart>lung. However, no significant effect of resveratrol on P-450 reductase activity was observed. It seems that the presence of quercetin and EGCG in the diet may increase P-450 reductase activity during doxorubicin therapy with subsequent increased risk of toxicity. A beneficial effect may be obtained in anticancer therapy with bioreductive agents like tirapazamine. [source] |