Cyclic Voltammograms (cyclic + voltammogram)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Electrochemical Preparation of Poly(Malachite Green) Film Modified Nafion-Coated Glassy Carbon Electrode and Its Electrocatalytic Behavior Towards NADH, Dopamine and Ascorbic Acid

ELECTROANALYSIS, Issue 14 2007
Shen-Ming Chen
Abstract Poly(malachite green) film modified Nafion-coated glassy carbon electrodes have been prepared by potentiodynamic cycling in malachite green solution. The pH of polymerisation solution has only minor effect on film formation. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the growth of the poly(malachite green) film. Cyclic voltammogram of the poly(malachite green) film shows a redox couple with well-defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 56,mV per pH unit. The electrocatalytic behavior of poly(malachite green) film modified Nafion-coated glassy carbon electrodes was tested towards oxidation of NADH, dopamine, and ascorbic acid. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(malachite green) film compared to bare glassy carbon electrode. In the case of NADH, the overpotential was reduced substantially on modified electrode. Finally, the feasibility of utilizing poly(malachite green) film electrode in analytical estimation of ascorbic acid was demonstrated in flow injection analysis. [source]


Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite

ELECTROANALYSIS, Issue 3 2010
Kangfu Zhou
Abstract Graphene was successfully prepared and well separated to individual sheets by introducing SO3,. XRD and TEM were employed to characterize the graphene. UV-visible absorption spectra indicated that glucose oxidase (GOx) could keep bioactivity well in the graphene-Au biocomposite. To construct a novel glucose biosensor, graphene, Au and GOx were co-immobilized in Nafion to further modify a glassy carbon electrode (GCE). Electrochemical measurements were carried out to investigate the catalytic performance of the proposed biosensor. Cyclic voltammograms (CV) showed the biosensor had a typical catalytic oxidation response to glucose. At the applied potential +0.4,V, the biosensor responded rapidly upon the addition of glucose and reached the steady state current in 5,s, with the present of hydroquinone. The linear range is from 15,,M to 5.8,mM, with a detection limit 5,,M (based on the S/N=3). The Michaelis-Menten constant was calculated to be 4.4,mM according to Lineweaver,Burk equation. In addition, the biosensor exhibits good reproducibility and long-term stability. Such impressive properties could be ascribed to the synergistic effect of graphene-Au integration and good biocompatibility of the hybrid material. [source]


Electrochemistry of Mitochondria: A New Way to Understand Their Structure and Function

ELECTROANALYSIS, Issue 14 2008
Jing Zhao
Abstract In this article, electrochemistry of mitochondria is achieved. Cyclic voltammograms of freshly prepared mitochondria were obtained by immobilizing mitochondria together with glutaraldehyde and bovine serum albumin on the surface of a pyrolytic graphite electrode. Two pairs of redox peaks could be observed which were ascribed to the electron transfer reactions of cytochrome c and FAD/FADH2. Study of submitochondrial particles was also conducted, which could confirm the results of the study of the entire mitochondria. The redox wave of NADH could be obtained due to the destruction of the membrane of mitochondria. We have also checked the function of succinate in mitochondria by employing the electrochemical method. This work is not only the first to be able to obtain the direct electrochemistry of mitochondria, but is also beneficial to the further understanding of the structure and function of mitochondria in vitro. [source]


Electrocatalytic Oxidation of Sulfur Containing Amino Acids at Renewable Ni-Powder Doped Carbon Ceramic Electrode: Application to Amperometric Detection L -Cystine, L -Cysteine and L -Methionine

ELECTROANALYSIS, Issue 21 2006
Abdollah Salimi
Abstract A sol-gel technique was used here to prepare a renewable carbon ceramic electrode modified with nickel powder. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple due to Ni(II)/Ni(III) system with surface confined characteristics. The modified electrode shows excellent catalytic activity toward L -cystine, L -cysteine and L -methionine oxidation at reduced overpotential in alkaline solutions. In addition the antifouling properties at the modified electrode toward the above analytes and their oxidation products increases the reproducibility of results. L -cystine, L -cysteine and L -methionine were determined chronoamperometricaly at the surface of this modified electrode at pH range 9,13. Under the optimized conditions the calibration curves are linear in the concentration range 1,450,,M, 2,90,,M and 0.2,75,,M for L -cystine, L -methionine and L -cysteine determination, respectively. The detection limit and sensitivity were 0.64,,M, 3.8,nA/ ,M for L -cystine, 2,,M, 5.6,nA/ ,M for L -methionine and 0.2,,M and 8.1,nA/,M for L -cysteine. The advantageous of this modified electrode is high response, good stability and reproducibility, excellent catalytic activity for oxidation inert molecules at reduced overpotential and possibility of regeneration of the electrode surface by potential cycling for 5,minutes. Furthermore, the modified electrode has been prepared without using specific reagents. This sensor can be used as an amperometric detector for disulfides detection in chromatographic or flow systems. [source]


Electroconductive Hydrogels: Electrical and Electrochemical Properties of Polypyrrole-Poly(HEMA) Composites

ELECTROANALYSIS, Issue 7 2005
Sean Brahim
Abstract Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2-hydroxyethyl methacrylate)-based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ,472,mV for electropolymerized polypyrrole to ,636,mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100,,, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3,M Cl,) for typically 100,min. (conditioning) to reduce the background amperometric current to <1.0,,A, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10,5,cm2,s,1) compared to electropolymerized PPy (Dappt=5.56×10,5,cm2,s,1), however a marked reduction in diffusivity (Dappt=1.01×10,5,cm2,s,1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy-containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant [source]


Off the Back or on the Side: Comparison of meso and 2-Substituted Donor-Acceptor Difluoroborondipyrromethene (Bodipy) Dyads

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 15 2010
Andrew C. Benniston
Abstract The preparation of several difluoroborondipyrromethene (Bodipy) dyads is described incorporating covalently attached hydroquinone/quinone groups at the 2-position (BD-SHQ, BD-SQ, BD-SPHQ, BD-SPQ). The compounds, currently under investigation as chemical sensors for reactive oxygen species, show various levels of fluorescence depending on the oxidation state of the appended group. The 19F NMR spectrum for BD-SHQ in CDCl3 at room temperature reveals the two fluorines are inequivalent on the NMR timescale. In contrast, the 19F NMR spectrum for the counterpart quinone compound, BD-SQ, is consistent with two equivalent fluorine atoms. The two results are interpreted as the quinone is free to rotate around the connector bond, whereas this motion is restricted for the hydroquinone group and makes the fluorines chemically inequivalent. Cyclic voltammograms recorded for all derivatives in CH2Cl2 electrolyte solution are consistent with typical Bodipy-based redox chemistry; the potentials of which depend on factors such as presence of the phenylene spacer and oxidation state of the appended group. A comparison of the electrochemical behaviour with the counterpart meso derivatives reveals some interesting trends which are associated with the location of the HOMO/LUMOs. The absorption profiles for the compounds in CH3CN are again consistent with Bodipy-based derivatives, though there are some subtle differences in the band-shapes of the closely-coupled systems. In particular, the absorption spectra for the dyad, BD-SQ, in a wide range of solvents are appreciably broader than for BD-SHQ. Femtosecond transient absorption spectroscopy performed on the hydroquinone derivatives, BD-SHQ and its meso analogue is interpreted as electron transfer occurs from the hydroquinone unit to the first-excited singlet (S1) state of the Bodipy center, followed by ultrafast charge recombination to reinstate the ground state. The coupling of OH vibrations to the return electron transfer process is invoked to explain the lack of clear identification of the charge-separated state in the transient records. [source]


Soluble dithienothiophene polymers: Effect of link pattern

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2009
Shiming Zhang
Abstract Soluble conjugated polymers based on 3,5-didecanyldithieno[3,2- b:2,,3,- d]thiophene,single-bond (1), double-bond (2), and triple-bond linked (3),were synthesized by palladium(0)-catalyzed Stille coupling reaction and oxidation polymerization. The thermal, absorption, emission, and electrochemical properties of these polymers were examined; the effect of the link pattern was studied. All polymers exhibit decomposition temperatures over 295 °C and glass-transition temperatures in the range of 137,202 °C. The absorption spectra of 1, 2, and 3 in thin films exhibit absorption maxima at 381, 584, and 444 nm, respectively. Polymer 1 exhibits intense green emission located at 510 nm in film, whereas polymers 2 and 3 are nonemissive both in solution and in film due to H-aggregate. Cyclic voltammograms of polymers 1, 2, and 3 display irreversible oxidation waves with onset oxidation potentials at 1.73, 0.78, and 1.03 V versus Ag+/Ag, respectively. Theory calculation on model compounds suggests that the dihedral angle decreases in the order of 1 > 3 > 2. On reducing the dihedral angle, the polymer exhibits a longer absorption maximum, a smaller bandgap, a less oxidizing potential and fluorescence quench, due to more coplanar and more ,-electron delocalized backbone structure. Polymer solar cells were fabricated based on the blend of polymer 2 and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM). The power conversion efficiency of 0.45% was achieved under AM 1.5, 100 mW cm,2 using polymer 2:PCBM (1:2, w/w) as active layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2843,2852, 2009 [source]


Highly stable electrochromic polyamides based on N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamine

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2009
Sheng-Huei Hsiao
Abstract A new triphenylamine-containing aromatic diamine monomer, N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di- tert -butyl-substituted N,N,N,,N,-tetraphenyl-1,4-phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N -methyl-2-pyrrolidinone (NMP) and N,N -dimethylacetamide, and could be solution-cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass-transition temperatures of 269,296 °C, 10% weight-loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316,342 nm and photoluminescence maxima around 362,465 nm in the violet-blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole-transporting and electrochromic properties were examined by electrochemical and spectro-electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide-coated glass substrate exhibited two reversible oxidation redox couples at 0.57,0.60 V and 0.95,0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (,T%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330,2343, 2009 [source]


Poly(triarylamine): Its synthesis, properties, and blend with polyfluorene for white-light electroluminescence

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2007
Hung-Yi Lin
Abstract A new high-molecular-weight poly(triarylamine), poly[di(1-naphthyl)-4-anisylamine] (PDNAA), was successfully synthesized by oxidative coupling polymerization from di(1-naphthyl)-4-anisylamine (DNAA) with FeCl3 as an oxidant. PDNAA was readily soluble in common organic solvents and could be processed into freestanding films with high thermal decomposition and softening temperatures. Cyclic voltammograms of DNAA and PDNAA exhibited reversible oxidative redox couples at the potentials of 0.85 and 0.85 V, respectively, because of the oxidation of the main-chain triarylamine unit. This suggested that PDNAA is a hole-transporting material with an estimated HOMO level of 5.19 eV. The absorption maximum of a PDNAA film appeared at 370 nm, with an estimated band gap of 2.86 eV from the absorption edge. Unusual multiple photoluminescence maxima were observed at 546 nm, and this suggested its potential application in white-light-emission devices. Nearly white-light-emission devices could be obtained with either a bilayer-structure approach {indium tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonate)/PDNAA/poly[2,7-(9,9-dihexylfluorene)] (PF)/Ca} or a polymer-blend approach (PF/PDNAA = 95:5). The luminance yield and maximum external quantum efficiency of the light-emitting diode with the PF/PDNAA blend as the emissive layer were 1.29 cd/A and 0.71%, respectively, and were significantly higher than those of the homopolymer. This study suggests that the PDNAA is a versatile material for electronic and optoelectronic applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1727,1736, 2007 [source]


Synthesis, photoluminescence, and electrochromic properties of wholly aromatic polyamides bearing naphthylamine chromophores

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2006
Guey-Sheng Liou
Abstract A series of novel polyamides with pendent naphthylamine units having inherent viscosities of 0.15,1.02 dL/g were prepared via direct phosphorylation polycondensation from various diamines and a naphthylamine-based aromatic dicarboxylic acid, 1-[N,N -di(4-carboxyphenyl)amino]naphthalene. These amorphous polyamides were readily soluble in various organic solvents and could be cast into transparent and tough films. The aromatic polyamides had useful levels of thermal stability associated with high glass-transition temperatures (268,355 °C), 10% weight loss temperatures in excess of 480 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers showed maximum ultraviolet,visible absorption at 350,358 nm and exhibited fluorescence emission maxima around 435,458 nm in N -methyl-2-pyrrolidinone solutions with fluorescence quantum yields ranging from 0.4 to 15.0%. The hole-transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple around 1.08,1.16 V (oxidation onset potential) versus Ag/AgCl in an acetonitrile solution and revealed good stability of the electrochromic characteristics, with a color change from colorless to green at applied potentials ranging from 0 to 1.6 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6094,6102, 2006 [source]


Novel aromatic polyamides and polyimides functionalized with 4- tert -butyltriphenylamine groups

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2006
Sheng-Huei Hsiao
Abstract A new triphenylamine-containing diamine monomer, 4,4,-diamino-4,- tert -butyltriphenylamine, was successfully synthesized by the cesium fluoride-mediated N,N -diarylation of 4- tert -butylaniline with 4-fluoronitrobenzene, followed by the reduction of the nitro group. The obtained diamine monomer was reacted with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to produce two series of novel triphenylamine-based polyamides and polyimides with pendent tert -butyl substituents. Most of the polymers were readily soluble in polar organic solvents, such as N -methyl-2-pyrrolidone and N,N -dimethylacetamide (DMAc), and could be solution cast into tough and flexible polymer films. These polymers showed high glass transition temperatures between 282 and 320 °C, and they were fairly stable up to a temperature above 450 °C (for polyamides) or 500 °C (for polyimides). These polymers exhibited UV absorption maxima around 308 to 361 nm. The photoluminescence spectra of the polyamides in DMAc exhibited a peak emission wavelength in the blue at 421,433 nm. Cyclic voltammograms of polyamides and polyimides showed an oxidation wave at 1.0,1.1 V versus Ag/AgCl in an acetonitrile solution. All the polyamides and polyimides exhibited excellent reversibility of electrochromic characteristics by continuous several cyclic scans between 0.0 and 1.1,1.3 V, with a color change from the original pale yellowish neutral form to the green or blue oxidized forms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4579,4592, 2006 [source]


Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2005
Tzy-Hsiang Su
Abstract We report the preparation and characterization of a series of novel electrochromic, aromatic poly(amine amide)s with pendent triphenylamine units. The synthesis proceeded via direct phosphorylation polycondensation between a novel diamine, N,N -bis(4-aminophenyl)- N,,N,-diphenyl-1,4-phenylenediamine, and various aromatic dicarboxylic acids. All the poly(amine amide)s were amorphous and readily soluble in many common organic solvents and could be solution-cast into transparent, tough, and flexible films with good mechanical properties. They exhibited good thermal stability and 10% weight-loss temperatures above 540 °C. Their glass-transition temperatures were 263,290 °C. These polymers in N -methyl-2-pyrrolidinone solutions exhibited strong ultraviolet,visible absorption peaks at 307,358 nm and photoluminescence peaks around 532,590 nm in the green region. The hole-transporting and electrochromic properties were studied with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of poly(amine amide) films prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidation redox couples at 0.65 and 1.03 V versus Ag/AgCl in an acetonitrile solution. All the poly(amine amide)s showed excellent stability with respect to their electrochromic characteristics; the color of the films changed from pale yellow to green and then blue at 0.85 and 1.25 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2085,2098, 2005 [source]


Ruthenium(II) complexes incorporating tridentate Schiff base ligands: synthesis, spectroscopic, redox, catalytic and biological properties

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 5 2010
N. Sathya
Abstract A series of new diamagnetic ruthenium(II) complexes of the type [RuCl(CO)(B)(L)] (where B = PPh3, AsPh3 or Py; L = monobasic tridentate Schiff base ligands derived from o -aminophenol or o -aminothiophenol with ethylacetoacetate or ethylbenzoylacetate) have been synthesized and these complexes were characterized by physico-chemical and spectroscopic methods. Cyclic voltammograms of all the complexes show quasi-reversible oxidation in the range 0.24,1.05 V and the quasi-reversible reduction in the range , 0.14 to , 0.51 V. The observed redox potentials show little variation with respect to the replacement of triphenyl phosphine/arsine by pyridine. The complexes were tested as catalysts in the oxidation of primary and secondary alcohols using molecular oxygen at room temperature and also in CC coupling reactions. Further, the antibacterial properties of the free ligands and their metal complexes were evaluated against certain bacteria such as Escherichia coli and Staphylococcus aureus. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Chiral Ruthenium,Allenylidene Complexes That Bear a Fullerene Cyclopentadienyl Ligand: Synthesis, Characterization, and Remote Chirality Transfer

CHEMISTRY - AN ASIAN JOURNAL, Issue 3 2007
Yu-Wu Zhong Dr.
Abstract Ruthenium complexes that bear both a fullerene and an allenylidene ligand, [Ru(C60Me5)((R)-prophos)=CCCR1R2]PF6 (prophos=1,2-bis(diphenylphosphanyl)propane), were prepared by the reaction of [Ru(C60Me5)Cl((R)-prophos)] and a propargyl alcohol in better than 90,% yields, and characterized by 1H, 13C, and 31P,NMR, IR, and UV/Vis/NIR spectroscopy and MS. Cyclic voltammograms of these complexes showed one reversible or irreversible reduction wave due to the allenylidene part, and two reversible reduction waves due to the fullerene core. Nucleophilic addition of RMgBr or RLi proceeded regioselectively at the distal carbon atom of the allenylidene array. The reaction took place with a 60:40,95:5 level of diastereoselectivity with respect to the original chirality in the (R)-prophos ligand, which is located six atoms away from the electrophilic carbon center. [source]


Entropy Effects in Atom Distribution and Electrochemical Properties of AuxPt1,x/Pt(111) Surface Alloys

CHEMPHYSCHEM, Issue 7 2010
Andreas Bergbreiter
Abstract We report on the structural and electrochemical properties of AuxPt1,xsurface alloys prepared by Au vapour deposition onto Pt(111) followed by annealing to 1000 K. Driven by configurational entropy, Pt and Au atoms are distributed homogeneously over the surface. On the nm scale, however, atomically resolved scanning tunnelling microscopy images with chemical contrast reveal the formation of nm-sized Pt-rich and Au-rich aggregates, similar to the behaviour recently reported for PdxRu1,x/Ru(0001) [H. Hartmann, T. Diemant, A. Bergbreiter, J. Bansmann, H. E. Hoster, R. J. Behm, Surf. Sci. 2009, 603, 1439]. Based on the STM data, we determine the abundance of specific adsorption sites for different Au contents, and we derive effective pair interaction parameters that allow reproducing the lateral distribution in Monte Carlo simulations. Cyclic voltammograms of the surface alloys have many similarities with Pt(111). Had and OHad related features both decrease with increasing amount of Au. Both seem to adsorb only on Pt sites, but Had requires smaller ensembles of Pt atoms than OHad. The onset potential for Had -formation decreases with increasing Au content. This is can be explained by an effect of the Au atoms on the entropy of adsorption. [source]


Voltammetric Elucidation of Ion Transfer Through an Extremely Thin Membrane

ELECTROANALYSIS, Issue 9 2004
Nobuyuki Ichieda
Abstract Digital simulation of the cyclic voltammogram for the ion transfer through a liquid membrane of thickness from 1,mm to 10,nm was performed. The magnitude of current and the shape of the voltammogram simulated for extremely thin membrane (10,nm thick) were similar to those observed experimentally with a bilayer lipid membrane, BLM, of about 10,nm in thick, when the diffusion coefficient of an ion in the BLM was assumed to be extraordinary small (10,13 to 10,14,cm2 s,1). [source]


Dinuclear Manganese and Cobalt Complexes with Cyclic Polyoxovanadate Ligands: Synthesis and Characterization of [Mn2V10O30]6, and [Co2(H2O)2V10O30]6,

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2009
Shinnosuke Inami
Abstract An all-inorganic complex, [Mn2{(VO3)5}2]6, (1), was synthesized, and the structure determination reveals a dinuclear manganese complex coordinated by two cyclic pentavanadate ligands. The cyclic pentavanadate units sandwich the edge-sharing octahedral dimanganese core through coordination of the oxido group of the pentavanadate. A dinuclear cobalt complex with a cyclic decavanadate, [Co2(OH2)2(VO3)10]6, (2), was also synthesized. The structure analysis reveals a dinuclear cobalt complex with a macrocyclic decavanadate, which is composed of 10 VO4 units joined by the vertex sharings. The CoO6 octahedrons are edge-shared, with each cobalt octahedron coordinated to five oxido groups from the decavanadate. The remaining site is occupied by water. The coordinated water molecules are supported with hydrogen bonds in two directions. Complex 2 in acetonitrile shows no reactivity with dioxygen even at low temperature, and the cyclic voltammogram of 2 shows no redox chemistry in acetonitrile. Complex 2 exhibits chromism by water exposure both in the solid state and in acetonitrile. Complex 2 is green,yellow in color, and the addition of water causes the complex to turn brown. After heating the sample, it returns to its original color in a reversible manner. The EXAFS data in acetonitrile is also reported and is consistent with the solid-state structure. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Direct Electrochemical Preparation of NbSi Alloys from Mixed Oxide Preform Precursors,

ADVANCED ENGINEERING MATERIALS, Issue 3 2009
Fanke Meng
A new method of preparation of NbSi alloys has been provided in this article. Electro-deoxidizing mixed Nb2O5 and SiO2 small cylindrical pellets in molten CaF2 at high temperature (1500,°C) could produce homogenous NbSi alloys. And then, the cyclic voltammogram (CV) method was used to analyze the electroreduction mechanism. This effective method could shorten procedures of production of NbSi alloys and will be promising for industrial utilization. [source]


Synthesis and characterization of new blue-greenish electroluminescent materials based on 1,3,4-oxadiazole-triazolopyridinone hybrids

HETEROATOM CHEMISTRY, Issue 3 2007
Ming-Hsiang Shin
New functionalized oxadiazole-triazolopyridinone derivatives were synthesized via arcycloaddition. With the chromophores of triazolopyridinone, the photoluminescence spectra of these compounds in dichloromethane solution showed emission peaks between 430 and 520 nm. Following the spectroscopic studies, and the measurements of cyclic voltammogram, 1,3,4-oxadiazole-triazolopyridinone hybrids possess a great potential as highly efficient, blue-greenish, organic light-emitting devices materials. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:212,219, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20285 [source]


New synthesis of highly potential efficient bluish-green electroluminescent materials based on 1,3,4-oxadiazole,triazolopyridinone,carbazole derivatives for single-layer devices

HETEROATOM CHEMISTRY, Issue 2 2006
Ming-Hsiang Shin
New potential bluish-green electroluminescent materials of 1,3,4-oxadiazole,triazolopyridin- one,carbazole derivatives were synthesized and characterized for single-layer devices. Carbazole, pyridine, and triazolopyridinone were completely introduced into 1,3,4-oxadiazole skeletal to play assistant roles in controlling fundamental photolytic process due to the electron-donating nature, excellent photoconductivity, and flexible structure properties. Following the spectroscopic studies and the measurements of cyclic voltammogram, 1,3,4-oxadiazole,triazolopyridinone,carbazole derivatives were highly efficient bluish-green electroluminescent materials. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:160,165, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20201 [source]


Voltammetric Sizing of Inert Particles

CHEMPHYSCHEM, Issue 7 2005
Trevor J. Davies
Abstract The average size of inert particles is determined using a simple electrochemical procedure. Alumina particles are deposited on an edge-plane graphite electrode, and a cyclic voltammogram is recorded. The scan rate employed varies between 0.2 and 2 V,s,1. At these scan rates the diffusion layer thickness is greater than the size of the alumina particles, minimizing the influence of the particles, height on the observed voltammetry. The average size of the particles is determined via comparison of the experimental voltammograms with simulations. [source]


Li4Ti5O12 Nanoparticles Prepared with Gel-hydrothermal Process as a High Performance Anode Material for Li-ion Batteries

CHINESE JOURNAL OF CHEMISTRY, Issue 6 2010
Zheng Qiu
Abstract Li4Ti5O12 (LTO) nanoparticles were prepared by gel-hydrothermal process and subsequent calcination treatment. Calcination treatment led to structural water removal, decomposition of organics and primary formation of LTO. The formation temperature of spinel LTO nanoparticles was lower than that of bulk materials counterpart prepared by solid-state reaction or by sol-gel processing. Based on the thermal gravimetric analysis (TG) and differential thermal gravimetric (DTG), samples calcined at different temperatures (350, 500 and 700°C) were characterized by X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), transmission electron microscopy (TEM), cyclic voltammogram and charge-discharge cycling tests. A phase transition during the calcination process was observed from the XRD patterns. And the sample calcined at 500°C had a distribution of diameters around 20 nm and exhibited large capacity and good high rate capability. The well reversible cyclic voltammetric results of both electrodes indicated enhanced electrochemical kinetics for lithium insertion. It was found that the Li4Ti5O12 anode material prepared through gel-hydrothermal process, when being cycled at 8 C, could preserve 76.6% of the capacity at 0.3 C. Meanwhile, the discharge capacity can reach up to 160.3 mAh·g,1 even after 100 cycles at 1 C, close to the theoretical capacity of 175 mAh·g,1. The gel-hydrothermal method seemed to be a promising method to synthesize LTO nanoparticles with good application in lithium ion batteries and electrochemical cells. [source]


Square Wave Voltammetric Label-free Determination of the Natural Protein Material Silk Fibroin

CHINESE JOURNAL OF CHEMISTRY, Issue 11 2008
Ming-Ming MA
The electrochemical behavior of silk fibroin (SF) was investigated by cyclic voltammetry and square wave voltammetry in 0.01 mol/L HCl for the first time. Within the potential scan range of 0.0 to1.2 V (vs. SCE), two oxidative peaks at 0.91 V (Pa,1) and 0.43 V (Pa,2) as well as one reductive peak at 0.24 V (Pc ) were observed on cyclic voltammogram at scan rate of 0.2 V/s. The peak current of the peak Pa,1 was linear with SF concentration in the range of 5.8×10,8 to 1.1×10,6 mol/L, with the limit of detection 3.0×10,8 mol/L (S/N=3). The proposed method was of high selectivity without the interferences from the coexisting substances such as another natural protein material sericin and other small molecular substances. It was applied to the determination of SF in raw silk liquid samples without any pre-separation and pre-purification. [source]


Electrocrystallization of Monodisperse Nanocrystal Copper on Highly Oriented Pyrolytic Graphite Electrode

CHINESE JOURNAL OF CHEMISTRY, Issue 2 2005
Huang Lin
Abstract Mechanism of copper electrocrystallization on highly oriented pyrolytic graphite electrode from a solution of 1 mmol/L CuSO4 and 1.0 mol/L H2SO4 has been studied using cyclic voltammogram and chronoamperometry. The results show that in copper electrodeposition the charge-transfer step is fast and the rate of growth is controlled by the rate of mass transfer of copper ions to the growing centers. Reduction of Cu(II) ions did not undergo underpotential deposition. The initial deposition kinetics of Cu electrocrystallization corresponds to a model including progressive nucleation and diffusion controlled growth. Copper nanocrystals with size of 75.6 nm and relative standard deviation of 9% can be obtained by modulation potential electrodeposition. [source]


Voltammetric Determination of L -Dopa on Poly(3,4-ethylenedioxythiophene)-Single-Walled Carbon Nanotube Composite Modified Microelectrodes

ELECTROANALYSIS, Issue 4 2010
Jayaraman Mathiyarasu
Abstract In the present communication, it is shown that platinum microelectrodes electrochemically coated with a composite of poly(3,4-)ethylenedioxythiophene and single-walled carbon nanotubes (PEDOT/SWNT) enable determinations of 3,4-dihydroxy- L -phenylalaines (L -dopa) in neutral phosphate buffer solutions containing an excess of ascorbic acid. The interpenetrated networked nanostructure of the composite was characterized by scanning electron microscope (SEM) and Raman spectroscopy. It is shown that the presence of the composite gives rise to an increase in the electroactive area of an order of magnitude in compared to the area for the bare microelectrodes. The composite film-coated microelectrode, which yielded reversible cyclic voltammograms for the ferro/ferricyanide redox couple for scan rates between 0.01 and 0.10,V s,1, also gave rise to two well-resolved oxidation peaks for L -dopa and ascorbic acid (AA). The latter effect, which was not seen in the absence of the composite, enabled differential pulse voltammetric determinations of L -dopa in the concentration range between 0.1 to 20,,M with a detection limit of 100,nM. [source]


Kinetic Study of the Oxidation of Catechols in the Presence of Some Aza-crown Ethers by Digital Simulation of Cyclic Voltammograms

ELECTROANALYSIS, Issue 9 2009
Davood Nematollahi
Abstract The electrochemical oxidation of catechols (1) have been studied in the presence of diaza-18-crown-6 (DA18C6) (3a), diaza-15-crown-5 (DA15C5) (3b), and aza-15-crown-5 (A15C5) (3c) as nucleophiles in aqueous solution, by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of electrochemically generated o -benzoquinones (2) in Michael-type reaction with aza-crown ethers (3) to form the corresponding new o -benzoquinone-aza-crown ether adducts (5). Based on ECE mechanism, the observed homogeneous rate constants (kobs) of the reaction of o -bezoquinones (2) with aza-crown ethers (3) were estimated by comparing the experimental cyclic voltammograms with the digital simulated results. The calculated observed homogeneous rate constants (kobs) was found to vary in the order DA18C6>DA15C5>A15C5. [source]


Electrochemical Approach to the Radical Anion Formation from 2,-Hydroxy Chalcone Derivatives

ELECTROANALYSIS, Issue 5 2006
P. Quintana-Espinoza
Abstract Three 2,-hydroxy chalcone derivatives were electrochemically reduced to the radical anion by a reversible one-electron transfer followed by a chemical dimerization reaction. Under suitable conditions of the medium, the one-electron reduction produces very well resolved cyclic voltammograms due to the formation of the radical anion. By using appropriately the wide versatility of the cyclic voltammetric technique, was possible to study the generation of the radical anion and its stability. [source]


Electrochemical Reduction of 4,4,-(2,2,2-Trichloroethane-1,1-diyl)- bis(chlorobenzene) (DDT) and 4,4,-(2,2-Dichloroethane-1,1-diyl)- bis(chlorobenzene) (DDD) at Carbon Cathodes in Dimethylformamide

ELECTROANALYSIS, Issue 4 2006
Mohammad
Abstract In dimethylformamide containing tetramethylammonium tetrafluoroborate, cyclic voltammograms for reduction of 4,4,-(2,2,2-trichloroethane-1,1-diyl)bis(chlorobenzene) (DDT) at a glassy carbon cathode exhibit five waves, whereas three waves are observed for the reduction of 4,4,-(2,2-dichloroethane-1,1-diyl)bis(chlorobenzene) (DDD). Bulk electrolyses of DDT and DDD afford 4,4,-(ethene-1,1-diyl)bis(chlorobenzene) (DDNU) as principal product (67,94%), together with 4,4,-(2-chloroethene-1,1-diyl)bis(chlorobenzene) (DDMU), 1-chloro-4-styrylbenzene, and traces of both 1,1-diphenylethane and 4,4,-(ethane-1,1-diyl)bis(chlorobenzene) (DDO). For electrolyses of DDT and DDD, the coulometric n values are essentially 4 and 2, respectively. When DDT is reduced in the presence of a large excess of D2O, the resulting DDNU and DDMU are almost fully deuterated, indicating that reductive cleavage of the carbon,chlorine bonds of DDT is a two-electron process that involves carbanion intermediates. A mechanistic scheme is proposed to account for the formation of the various products. [source]


Voltammetric Assay of Naproxen in Pharmaceutical Formulations Using Boron-Doped Diamond Electrode

ELECTROANALYSIS, Issue 11 2005
V. Suryanarayanan
Abstract The electrooxidation of naproxen was studied, for the first time, using boron-doped diamond (BDD) electrode by cyclic and differential pulse voltammetry (CV and DPV) in nonaqueous solvent supporting electrolyte system. The results were also compared with glassy carbon electrode (GC) under the same conditions. Naproxen undergoes one electron transfer resulting in the formation of cation radical for the first electrooxidation step, which follows other chemical and electrochemical steps such as deprotonation, removal of another electron and the attack of nucleophile (ECEC mechanism). BDD electrode provided higher signal to background ratio, well resolved and highly reproducible cyclic voltammograms than the GC electrode. With a scan rate of 50,mV s,1 and pulse height of 50,ms, respectively, the DPV technique was able to determine the naproxen concentrations in the range of 0.5 to 50,,M with a detection limit of 30,nM. The influence of interference compounds namely 2-acetyl-6-methoxy naphthalene (AMN) on naproxen oxidation can also be followed successfully. Moreover, the percentage of AMN present in the standard chemical form of a mixture containing naproxen can be found accurately. Rapidity, precise and good selectivity were also found for the determination of naproxen in pharmaceutical formulations. [source]


Cobalt(III) Complexes of a Tripodal Ligand Containing Three Imidazole Groups: Properties and Structures of Racemic and Optically Active Species

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2008
Hirofumi Nakamura
Abstract The complex [Co(H3L)](ClO4)3·H2O (1), where H3L {tris[2-(4-imidazoylmethylideneamino)ethyl]amine} is a tripodal ligand obtained by condensation of tris(2-aminoethyl)amine and 4-formylimidazole in a 1:3 molar ratio, was synthesized and optically resolved by fractional crystallization of the diastereomeric salt with [Sb2{(R,R)-tart}2]2, [(R,R)-tart = (2R,3R)-tartrate(4,) ion]. From the less soluble part, ,-[Co(H2L)][Sb2{(R,R)-tart}2]·4H2O (2) was isolated. Starting from 2, two optically active complexes, ,-[Co(H3L)](ClO4)3·1.5H2O (,- 1) and ,-[Co(L)] (,- 3), were obtained. The crystal structures of these complexes are compared with those of the racemic structures. ,- 1 shows an unusually strong circular dichroism (, = 488 nm, ,, = ,7.74 M,1,cm,1) in the first d,d absorption band region. The effects of deprotonation,reprotonation of the uncoordinated imidazole NH groups of ,-[Co(H3L)]3+ on the UV/Vis and CD spectra and on the cyclic voltammograms were studied in methanol. Although the deprotonation,reprotonation reactions are reversible, the redox couple for the completely deprotonated species [CoIII/II(L)]0/, is not observed. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]