Cyclic Stretch (cyclic + stretch)

Distribution by Scientific Domains


Selected Abstracts


Regulation of GADD153 induced by mechanical stress in cardiomyocytes

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2009
W. P. Cheng
Abstract Background, Growth arrest and DNA damage-inducible gene 153 (GADD153), an apoptosis regulated gene, increased during endoplasmic reticulum stress. However, the expression of GADD153 in cardiomyocytes under mechanical stress is little known. We aimed to investigate the regulation mechanism of GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. Materials and methods, Aorta-caval shunt was performed in adult Sprague,Dawley rats to induce volume overload. Rat neonatal cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles min,1. Results, The increased ventricular dimension measured using echocardiography in the shunt group (n = 8) was reversed to normal by treatment with chaperon 4-phenylbutyric acid (PBA) (n = 8) at 500 mg kg,1 day,1 orally for 3 days. GADD153 protein and mRNA were up-regulated in the shunt group when compared with sham group (n = 8). Treatment with PBA reversed the protein of GADD153 to the baseline values. The TUNEL assay showed that PBA reduced the apoptosis induced by volume overload. Cyclic stretch significantly increased GADD153 protein and mRNA expression after 14 h of stretch. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA and tumour necrosis factor-, (TNF-,) antibody 30 min before stretch, reduced the induction of GADD153 protein. Stretch increased, while GADD153-Mut plasmid, SP600125 and TNF-, antibody abolished the GADD153 promoter activity induced by stretch. GADD153 mediated apoptosis induced by stretch was reversed by GADD153 siRNA, GADD153-Mut plasmid and PBA. Conclusions, Mechanical stress enhanced apoptosis and GADD153 expression in cardiomyocytes. Treatment with PBA reversed both GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. [source]


Intracellular glutathione in stretch-induced cytokine release from alveolar type-2 like cells

RESPIROLOGY, Issue 1 2004
Behrouz Jafari
Objective: Ventilator-induced lung injury (VILI) is characterized by release of inflammatory cytokines, but the mechanisms are not well understood. We hypothesized that stretch-induced cytokine production is dependent on oxidant release and is regulated by intracellular glutathione (GSH) inhibition of nuclear factor ,B (NF-,B) and activator protein-1 (AP-1) binding. Methodology: Type 2-like alveolar epithelial cells (A549) were exposed to cyclic stretch at 15% strain for 4 h at 20 cycles/min with or without N-acetylcysteine (NAC) or glutathione monoethylester (GSH-e) to increase intracellular GSH, or buthionine sulfoximine (BSO), to deplete intracellular GSH. Results: Cyclic stretch initially caused a decline in intracellular GSH and a rise in the levels of isoprostane, a marker of oxidant injury. This was followed by a significant increase in intracellular GSH and a decrease in isoprostane. Stretch-induced IL-8 and IL-6 production were significantly inhibited when intracellular GSH was further increased by NAC or GSH-e (P < 0.0001). Stretch-induced IL-8 and IL-6 production were augmented when intracellular GSH was depleted by BSO (P < 0.0001). NAC blocked stretch-induced NF-,B and AP-1 binding and inhibited IL-8 mRNA expression. Conclusions: We conclude that oxidant release may play a role in lung cell stretch-induced cytokine release, and antioxidants, which increase intracellular GSH, may protect lung cells against stretch-induced injury. [source]


Heparin-binding epidermal growth factor-like growth factor functionally antagonizes interstitial cystitis antiproliferative factor via mitogen-activated protein kinase pathway activation

BJU INTERNATIONAL, Issue 4 2009
Jayoung Kim
OBJECTIVE To delineate the mechanism underlying the potential functional relationship between interstitial cystitis antiproliferative factor (APF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), as APF has previously been shown to decrease the proliferation rate of normal bladder epithelial cells and the amount of HB-EGF produced by these cells. MATERIALS AND METHODS APF-responsive T24 transitional carcinoma bladder cells were treated with high-pressure liquid chromatography-purified native APF with or without HB-EGF to determine the involvement of signalling pathways and proliferation by Western blot analysis, p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (Erk)/MAPK assays, and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Cyclic stretch induced the secretion of HB-EGF from T24 cells overexpressing the HB-EGF precursor, resulting in enhanced proliferation. T24 cells treated with APF had increased p38MAPK activity and suppressed cell growth, events that were both reversed by treatment with a p38MAPK-selective inhibitor. Activation of Erk/MAPK by HB-EGF was inhibited by APF, and APF did not stimulate p38MAPK in the presence of soluble HB-EGF or when cells overexpressed constitutively secreted HB-EGF. Lastly, APF inhibitory effects on cell growth were attenuated by HB-EGF. CONCLUSIONS These results indicate that HB-EGF and APF are functionally antagonistic and signal through parallel MAPK signalling pathways in bladder cells. [source]


Behavior of Nonselective Cation Channels and Large-Conductance Ca2+ -Activated K+ Channels Induced by Dynamic Changes in Membrane Stretch in Cultured Smooth Muscle Cells of Human Coronary Artery

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2003
PH.D., SHENG-NAN WU M.D.
Stretch-Activated Ion Channels. Introduction: The effects of membrane stretch on ion channels were investigated in cultured smooth muscle cells of human coronary artery. Methods and Results: In the cell-attached configuration, membrane stretch with negative pressure induced two types of stretch-activated (SA) ion channels: a nonselective cation channel and a large-conductance Ca2+ -activated K+ (BKCa) channel. The single-channel conductances of SA cation and BKCa channels were 26 and 203 pS, respectively. To elucidate the mechanism of activation of these SA channels and to minimize mechanical disruption, a sinusoidal change in pipette pressure was applied to the on-cell membrane patch. During dynamic changes in pipette pressure, increases in SA cation channel activity was found to coincide with increases in BKCa channel activity. In the continued presence of cyclic stretch, the activity of SA cation channels gradually diminished. However, after termination of cyclic stretch, BKCa channel activity was greatly enhanced, but the activity of SA cation channels disappeared. Conclusion: This study is the first to demonstrate that the behavior of SA cation and BKCa channels in coronary smooth muscle cells is differentially susceptible to dynamic changes in membrane tension. [source]


Mechanical load induced by glass microspheres releases angiogenic factors from neonatal rat ventricular myocytes cultures and causes arrhythmias

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5b 2008
D. Y. Barac
Abstract In the present study, we tested the hypothesis that similar to other mechanical loads, notably cyclic stretch (simulating pre-load), glass microspheres simulating afterload will stimulate the secretion of angiogenic factors. Hence, we employed glass microspheres (average diameter 15.7 ,m, average mass 5.2 ng) as a new method for imposing mechanical load on neonatal rat ventricular myocytes (NRVM) in culture. The collagen-coated microspheres were spread over the cultures at an estimated density of 3000 microspheres/mm2, they adhered strongly to the myocytes, and acted as small weights carried by the cells during their contraction. NRVM were exposed to either glass microspheres or to cyclic stretch, and several key angiogenic factors were measured by RT-PCR. The major findings were: (1) In contrast to other mechanical loads, such as cyclic stretch, microspheres (at 24 hrs) did not cause hypertrophy. (2) Further, in contrast to cyclic stretch, glass microspheres did not affect Cx43 expression, or the conduction velocity measured by means of the Micro-Electrode-Array system. (3) At 24 hrs, glass microspheres caused arrhythmias, probably resulting from early afterdepolarizations. (4) Glass microspheres caused the release of angiogenic factors as indicated by an increase in mRNA levels of vascular endothelial growth factor (80%), angiopoietin-2 (60%), transforming growth factor-, (40%) and basic fibroblast growth factor (15%); these effects were comparable to those of cyclic stretch. (5) As compared with control cultures, conditioned media from cultures exposed to microspheres increased endothelial cell migration by 15% (P<0.05) and endothelial cell tube formation by 120% (P<0.05), both common assays for angiogenesis. In conclusion, based on these findings we propose that loading cardiomyocytes with glass microspheres may serve as a new in vitro model for investigating the role of mechanical forces in angiogenesis and arrhythmias. [source]


Intracellular glutathione in stretch-induced cytokine release from alveolar type-2 like cells

RESPIROLOGY, Issue 1 2004
Behrouz Jafari
Objective: Ventilator-induced lung injury (VILI) is characterized by release of inflammatory cytokines, but the mechanisms are not well understood. We hypothesized that stretch-induced cytokine production is dependent on oxidant release and is regulated by intracellular glutathione (GSH) inhibition of nuclear factor ,B (NF-,B) and activator protein-1 (AP-1) binding. Methodology: Type 2-like alveolar epithelial cells (A549) were exposed to cyclic stretch at 15% strain for 4 h at 20 cycles/min with or without N-acetylcysteine (NAC) or glutathione monoethylester (GSH-e) to increase intracellular GSH, or buthionine sulfoximine (BSO), to deplete intracellular GSH. Results: Cyclic stretch initially caused a decline in intracellular GSH and a rise in the levels of isoprostane, a marker of oxidant injury. This was followed by a significant increase in intracellular GSH and a decrease in isoprostane. Stretch-induced IL-8 and IL-6 production were significantly inhibited when intracellular GSH was further increased by NAC or GSH-e (P < 0.0001). Stretch-induced IL-8 and IL-6 production were augmented when intracellular GSH was depleted by BSO (P < 0.0001). NAC blocked stretch-induced NF-,B and AP-1 binding and inhibited IL-8 mRNA expression. Conclusions: We conclude that oxidant release may play a role in lung cell stretch-induced cytokine release, and antioxidants, which increase intracellular GSH, may protect lung cells against stretch-induced injury. [source]


Effects of Cyclic Stretch Waveform on Endothelial Cell Morphology Using Fractal Analysis

ARTIFICIAL ORGANS, Issue 6 2010
Nooshin Haghighipour
Abstract Endothelial cells are remodeled when subjected to cyclic loading. Previous in vitro studies have indicated that frequency, strain amplitude, and duration are determinants of endothelial cell morphology, when cells are subjected to cyclic strain. In addition to those parameters, the current study investigated the effects of strain waveform on morphology of cultured endothelial cells quantified by fractal and topological analyses. Cultured endothelial cells were subjected to cyclic stretch by a designed device, and cellular images before and after tests were obtained. Fractal and topological parameters were calculated by development of an image-processing code. Tests were performed for different load waveforms. Results indicated cellular alignment by application of cyclic stretch. By alteration of load waveform, statistically significant differences between cell morphology of test groups were observed. Such differences are more prominent when load cycles are elevated. The endothelial cell remodeling was optimized when the applied cyclic load waveform was similar to blood pressure waveform. Effects of load waveform on cell morphology are influenced by alterations in load amplitude and frequency. It is concluded that load waveform is a determinant of endothelial morphology in addition to amplitude and frequency, and such effect is elevated by increase of load cycles. Due to high correlation between fractal and topological analyses, it is recommended that fractal analysis can be used as a proper method for evaluation of alteration in cell morphology and tissue structure caused by application of external stimuli such as mechanical loading. [source]