Cycle Factors (cycle + factor)

Distribution by Scientific Domains

Kinds of Cycle Factors

  • cell cycle factor


  • Selected Abstracts


    Osteoclast Differentiation by RANKL Requires NF-,B-Mediated Downregulation of Cyclin-Dependent Kinase 6 (Cdk6),

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2004
    Toru Ogasawara
    Abstract This study investigated the involvement of cell cycle factors in RANKL-induced osteoclast differentiation. Among the G1 cell cycle factors, Cdk6 was found to be a key molecule in determining the differentiation rate of osteoclasts as a downstream effector of the NF-,B signaling. Introduction: A temporal arrest in the G1 phase of the cell cycle is a prerequisite for cell differentiation, making it possible that cell cycle factors regulate not only the proliferation but also the differentiation of cells. This study investigated cell cycle factors that critically influence differentiation of the murine monocytic RAW264.7 cells to osteoclasts induced by RANKL. Materials and Methods: Growth-arrested RAW cells were stimulated with serum in the presence or absence of soluble RANKL (100 ng/ml). Expressions of the G1 cell cycle factors cyclin D1, D2, D3, E, cyclin-dependent kinase (Cdk) 2, 4, 6, and Cdk inhibitors (p18 and p27) were determined by Western blot analysis. Involvement of NF-,B and c- jun N-terminal kinase (JNK) pathways was examined by overexpressing dominant negative mutants of the I,B kinase 2 (IKKDN) gene and mitogen-activated protein kinase kinase 7 (MKK7DN) gene, respectively, using the adenovirus vectors. To determine the direct effect of Cdk6 on osteoclast differentiation, stable clones of RAW cells transfected with Cdk6 cDNA were established. Osteoclast differentiation was determined by TRACP staining, and cell cycle regulation was determined by BrdU uptake and flow cytometric analysis. Results and Conclusion: Among the cell cycle factors examined, the Cdk6 level was downregulated by RANKL synchronously with the appearance of multinucleated osteoclasts. Inhibition of the NF-,B pathway by IKKDN overexpression, but not that of the JNK pathway by MKK7DN overexpression, caused the decreases in both Cdk6 downregulation and osteoclastogenesis by RANKL. RAW cells overexpressing Cdk6 resist RANKL-induced osteoclastogenesis; however, cell cycle regulation was not affected by the levels of Cdk6 overexpression, suggesting that the inhibitory effect of Cdk6 on osteoclast differentiation was not exerted through cell cycle regulation. These results indicate that Cdk6 is a critical regulator of RANKL-induced osteoclast differentiation and that its NF-,B-mediated downregulation is essential for efficient osteoclast differentiation. [source]


    Inhibition of Cdk6 expression through p38 MAP kinase is involved in differentiation of mouse prechondrocyte ATDC5

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Toru Moro
    Because a temporal arrest in the G1-phase of the cell cycle is a prerequisite for cell differentiation, this study investigated the involvement of cell cycle factors in the differentiation of cultured mouse prechondrocyte cell line ATDC5. Among the G1 cell cycle factors examined, both protein and mRNA levels of cyclin-dependent kinase (Cdk6) were downregulated during the culture in a differentiation medium. The protein degradation of Cdk6 was not involved in this downregulation because proteasome inhibitors did not reverse the protein level. When inhibitors of p38 MAPK, ERK-1/2, and PI3K/Akt were added to the culture, only a p38 MAPK inhibitor SB203580 blocked the decrease in the Cdk6 protein level by the differentiation medium, indicating that the Cdk6 inhibition was mediated by p38 MAPK pathway. In fact, p38 MAPK was confirmed to be phosphorylated during differentiation of ATDC5 cells. Enforced expression of Cdk6 in ATDC5 cells blocked the chondrocyte differentiation and inhibited Sox5 and Sox6 expressions. However, the Cdk6 overexpression did not affect the proliferation or the cell cycle progression, suggesting that the inhibitory effect of Cdk6 on the differentiation was exerted by a mechanism largely independent of its cell cycle regulation. These results indicate that Cdk6 may be a regulator of chondrocyte differentiation and that its p38-mediated downregulation is involved in the efficient differentiation. © 2005 Wiley-Liss, Inc. [source]


    The determinants of industry concentration: two new empirical regularities

    MANAGERIAL AND DECISION ECONOMICS, Issue 8 2009
    Lasse B. Lien
    This paper reports two new empirical regularities concerning industry concentration. First, concentration levels closely correlate in related industries. Second, the correlation is moderated by the degree of relatedness between the industries. These regularities are derived from the Trinet database, using a survivor-based measure of relatedness. We argue that these previously overlooked relations may be explained in terms of (1) ,spillover effects' between industries and (2) life cycle factors. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Proliferation- and migration-enhancing effects of ginseng and ginsenoside Rg1 through IGF-I- and FGF-2-signaling pathways on RSC96 Schwann cells

    CELL BIOCHEMISTRY AND FUNCTION, Issue 4 2009
    Ming-Chin Lu
    Abstract The aim of the present study is to evaluate the proliferation- and migration-enhancing effects of ginseng and its component, ginsenoside (Rg1) on RSC96 Schwann cells. We investigated the molecular signaling pathways, which include: (1) survival signaling, IGFs-IGFIR-Akt-Bcl2 and proliferative signaling, cell cycle factors and mitogen-activated protein kinase (MAPK) pathways, (2) migrating and anti-scar signaling, FGF-2-uPA-MMPs. We treated RSC96 cells with different concentrations (100, 200, 300, 400, 500,µg,ml,1) of ginseng and its constituent, Rg1 (5, 10, 15, 20, 25,µg,ml,1). We observed a proliferative effect in a dose-dependent manner by PCNA western blotting assay, MTT assay, and wound healing test. Furthermore, we also found in the results of western blotting assay, ginseng and Rg1 enhance protein expression of IGF-I pathway regulators, cell cycle controlling proteins, and MAPK signaling pathways to promote the cell proliferation. In addition, ginseng and Rg1 also stimulated the FGF-2-uPA-MMP 9 migrating pathway to enhance the migration of RSC96 Schwann cells. Using MAPK chemical inhibitors, U0126, SB203580, and SP600125, the proliferative effects of ginseng and Rg1 on RSC96 cells were identified to be MAPK signaling-dependent. On the basis of the results, applying appropriate doses of ginseng and Rg1 with biomedical materials would be a potential approach for enhancing neuron regeneration. Copyright © 2009 John Wiley & Sons, Ltd. [source]