Home About us Contact | |||
Current Inhibition (current + inhibition)
Selected AbstractsInfluence of Extracellular K+ Concentrations on Quinidine-induced K+ Current Inhibition in Rat Ventricular MyocytesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2000MICHIKO HIROTA Hypokalaemia is one of the important risk factors for development of torsades de pointes. We recently reported that hypokalaemia increased the electrocardiographic QT interval in rats treated with quinidine, but did not alter the arrhythmogenic potency of quinidine. In this study, we have investigated the influence of extracellular potassium concentration ([K+]o) on the inhibition of several types of cardiac potassium currents by quinidine. Such types of currents include the delayed rectifier potassium current (IK), the transient outward current (Ito), and the inward rectifier potassium current (IK1), as measured in isolated rat ventricular cells using patch-clamp techniques. Concentration-dependent effects of quinidine on IK, Ito, and IK1 were evaluated under both normal ([K+]o = 5.4 mM) and hypokalaemic ([K+]o = 3.5 mM) conditions. In contrast to both IK and Ito, which were barely influenced by changes in [K+]o, IK1 was significantly inhibited by hypokalaemia. Furthermore, while quinidine suppressed both IK and Ito in a concentration-dependent manner, the inhibitory potency of quinidine on these currents was not influenced by changes in [K+]o. The respective normal and hypokalaemic IC50 values for quinidine were 11.4 and 10.0 ,M (IK), and 17.6 and 17.3 ,M (Ito). Although higher concentrations of quinidine were required to inhibit IK1, the inhibitory potency of quinidine was also found to be insensitive to changes in [K+]o. Thus, in rats, the inhibitory potency of quinidine for the K+ current-types IK, Ito and IK1 is barely influenced by changes in [K+]o. These findings are consistent with our previous report showing that the QT-prolonging potency of quinidine was not altered under hypokalaemic conditions. However, whilst hypokalaemia does not affect IK or Ito, it can inhibit IK1 and can result in QT prolongation in-vivo. [source] Thymol analogues with antioxidant and L-type calcium current inhibitory activityDRUG DEVELOPMENT RESEARCH, Issue 4 2005Ai-Yu Shen Abstract Thymol is a natural product, which has antioxidant activity. 4-Morpholinomethyl-2-isopropyl-5-methylphenol (THMO), and 4-Pyrrolidinomethyl-2-isopropyl- 5-methylphenol (THPY) were synthesized by reacting thymol with formaldehyde and, respectively, morpholine or pyrrolidine. Since there is a relationship between the antioxidative status and incidence of human disease, anti-superoxidation, free radical scavenger activity, and anti-lipid peroxidation of the thymol analogues were determined by xanthine oxidase inhibition, cytochrome C system with superoxide anion releasing with formyl-Met-Leu-Phe (fMLP)/cytochalasin (CB) or phorbol myristate acetate (PMA) activating pathway in human neutrophils. All compounds studied had antioxidant activity. Mannich bases derived from thymol were generally found to be more potent compounds than thymol. THMO demonstrated the greatest antioxidant activity with IC50 values for xanthine oxidase inhibition and anti-lipid peroxidation being 21±2.78 and 61.29±5.83 µM, respectively. Moreover, since oxidative stress by free radical regulates the activity of L-type Ca2+ channel, the whole-cell configuration of the patch-clamp technique was used to investigate the effect of THMO upon ionic currents within NG108-15 cells. THMO (10 µM) suppressed the peak amplitude of L-type Ca2+ inward current (ICa,L), indicating that the antioxidative potential of the thymol analogues might be related to calcium current inhibition. The present studies suggest that THMO-dependent antioxidant and calcium ion current inhibition activity may be useful in treating free radical-related disorders. Drug Dev Res 64:195,202, 2005. © 2005 Wiley-Liss, Inc. [source] Topology and patch-clamp analysis of the sodium channel in relationship to the anti-lipid a antibody in campylobacteriosisJOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2008Seigo Usuki Abstract An infecting strain VLA2/18 of Campylobacter jejuni was obtained from an individual with campylobacteriosis and used to prepare chicken sera by experimental infection to investigate the role of serum anti-ganglioside antibodies in Guillain-Barré syndrome. Both sera of the patient and chicken contained anti-ganglioside antibodies and anti-Lipid A (anti-Kdo2-Lipid A) antibodies directed against the lipid A portion of the bacterial lipooligosaccharide. The anti-Kdo2-Lipid A activities inhibited voltage-gated Na (Nav) channel of NSC-34 cells in culture. We hypothesized that anti-Kdo2-Lipid A antibody acts on the functional inhibition of Nav1.4. To test this possibility, a rabbit peptide antibody (anti-Nav1.4 pAb) against a 19-mer peptide (KELKDNHILNHVGLTDGPR) on the , subunit of Nav1.4 was produced. Anti-Nav1.4 pAb was cross-reactive to Kdo2-Lipid A. Anti-Kdo2-lipid A antibody activity in the chicken serum was tested for the Na+ current inhibition in NSC-34 cells in combination with ,-Conotoxin and tetrodotoxin. Contrary to our expectations, the anti-Kdo2-Lipid A antibody activity was extended to Nav channels other than Nav1.4. By overlapping structural analysis, it was found that there might be multiple peptide epitopes containing certain dipeptides showing a structural similarity with v-Lipid A. Thus, our study suggests the possibility that there are multiple epitopic peptides on the extracellular domains of Nav1.1 to 1.9, and some of them may represent target sites for anti-Kdo2-Lipid A antibody, to induce neurophysiological changes in GBS by disrupting the normal function of the Nav channels. © 2008 Wiley-Liss, Inc. [source] Effects of 4-piperidinomethyl-2-isopropyl-5-methylphenol on oxidative stress and calcium currentJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2005Mei-Han Huang 4-Piperidinomethyl-2-isopropyl-5-methylphenol (THPI) was synthesized by reaction of thymol with piperidine and formaldehyde. The biological effect of THPI on superoxide anion scavenging activity, antiplatelet activity and calcium current inhibition were investigated. THPI (50 ,m) was shown to be a scavenger of superoxide radicals in human neutrophils stimulated with N -formyl-Met-Leu-Phe (66% inhibition). Since superoxide anions are essential for platelet aggregation and L-type Ca2+ -channel activity, we further found that THPI inhibited platelet aggregation induced by arachidonic acid (IC50 46.80 ± 6.88 ,m). The effect of THPI on Ca2+ current in NG108,15 cells was investigated using the whole-cell voltage-clamp technique. THPI inhibited voltage-dependent L-type Ca2+ current (ICa,L). The IC50 value of THPI-induced inhibition of ICa,L was 3.60 ± 0.81 ,m. THPI caused no change in the overall shape of the current-voltage relationship of ICa,L. This indicates that THPI is an inhibitor of ICa,L in NG108,15 cells. Therefore, the channel-blocking properties of THPI may contribute to the underlying mechanism by which it affects neuronal or neuroendocrine function. Furthermore, no significant cytotoxic effects of THPI (0.3,50 ,m) were observed in NG108,15 cells. The results indicate that THPI is a potential reactive oxygen species scavenger and may prevent platelet aggregation or inhibit L-type Ca2+ -channel activity, possibly by scavenging reactive oxygen species. [source] Inhibitory effect of erythromycin on potassium currents in rat ventricular myocytes in comparison with disopyramideJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2003Erika Hanada ABSTRACT Disopyramide, a class la antiarrhythmic agent, has been reported to induce torsades de pointes (TdP) associated with excessive QT prolongation in electrocardiogram (ECG), especially when concomitantly administered with erythromycin, a macrolide antibiotic agent. In this study, we have evaluated the effects of erythromycin on action potential duration (APD) and potassium currents in rat ventricular myocytes in comparison with disopyramide. We have evaluated the relationship between in-vitro potassium current inhibition and in-vivo QT prolongation observed in a previous study. Action potentials and membrane potassium currents, including delayed rectifier current (IK) and transient outward current (Ito), were recorded using a whole-cell patch clamp method in enzymatically-dissociated ventricular cells. Erythromycin and disopyramide prolonged APD in a concentration-dependent manner. Disopyramide (10,100 ,m) and erythromycin (100 ,m) led to increases in the APD at 90% repolarization level. Disopyramide reduced IK (IC50 = 37.2 + 0.17 ,m) and Ito (IC50 = 20.9 + 0.13 ,m) while erythromycin reduced IK (IC50 = 60.1 + 0.29 ,m) but not Ito. The observed prolongation of APD might be ascribed to the inhibition of potassium currents. Erythromycin produced the prolongation of APD and the inhibition of potassium currents with a lag time after addition of the drugs, which suggested that erythromycin might not reach potassium channels from outside the ventricular cells. The potency of disopyramide was almost equivalent under in-vitro and in-vivo conditions. However, potency of erythromycin in-vitro was far weaker than that in-vivo reported in a previous study, presumably due to a difference in the uptake of erythromycin into ventricular myocytes between in-vivo and in-vitro conditions. Therefore, when drug-induced risks of QT prolongation are to be evaluated, the difference of potencies between in-vitro and in-vivo should be taken into consideration. [source] Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteriesTHE JOURNAL OF PHYSIOLOGY, Issue 3 2004Serguei Y. Cheranov Mitochondria sequester and release calcium (Ca2+) and regulate intracellular Ca2+ concentration ([Ca2+]i) in eukaryotic cells. However, the regulation of different Ca2+ signalling modalities by mitochondria in smooth muscle cells is poorly understood. Here, we investigated the regulation of Ca2+ sparks, Ca2+ waves and global [Ca2+]i by mitochondria in cerebral artery smooth muscle cells. CCCP (a protonophore; 1 ,m) and rotenone (an electron transport chain complex I inhibitor; 10 ,m) depolarized mitochondria, reduced Ca2+ spark and wave frequency, and elevated global [Ca2+]i in smooth muscle cells of intact arteries. In voltage-clamped (,40 mV) cells, mitochondrial depolarization elevated global [Ca2+]i, reduced Ca2+ spark amplitude, spatial spread and the effective coupling of sparks to large-conductance Ca2+ -activated potassium (KCa) channels, and decreased transient KCa current frequency and amplitude. Inhibition of Ca2+ sparks and transient KCa currents by mitochondrial depolarization could not be explained by a decrease in intracellular ATP or a reduction in sarcoplasmic reticulum Ca2+ load, and occurred in the presence of diltiazem, a voltage-dependent Ca2+ channel blocker. Ru360 (10 ,m), a mitochondrial Ca2+ uptake blocker, and lonidamine (100 ,m), a permeability transition pore (PTP) opener, inhibited transient KCa currents similarly to mitochondrial depolarization. In contrast, CGP37157 (10 ,m), a mitochondrial Na+,Ca2+ exchange blocker, activated these events. The PTP blockers bongkrekic acid and cyclosporin A both reduced inhibition of transient KCa currents by mitochondrial depolarization. These results indicate that mitochondrial depolarization leads to a voltage-independent elevation in global [Ca2+]i and Ca2+ spark and transient KCa current inhibition. Data also suggest that mitochondrial depolarization inhibits Ca2+ sparks and transient KCa currents via PTP opening and a decrease in intramitochondrial [Ca2+]. [source] Voltage-dependent inhibition of the muscarinic cationic current in guinea-pig ileal cells by SK&F 96365BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2000A V Zholos The effects of SK&F 96365 on cationic current evoked either by activating muscarinic receptors with carbachol or by intracellularly applied GTP,S (in the absence of carbachol) were studied using patch-clamp recording techniques in single guinea-pig ileal smooth muscle cells. SK&F 96365 reversibly inhibited the muscarinic receptor cationic current in a concentration-, time- and voltage-dependent manner producing concomitant alteration of the steady-state I-V relationship shape which could be explained by assuming that increasing membrane positivity increased the affinity of the blocker. The inhibition was similar for both carbachol- and GTP,S-evoked currents suggesting that the cationic channel rather than the muscarinic receptor was the primary site of the SK&F 96365 action. Increased membrane positivity induced additional rapid inhibition of the cationic current by SK&F 96365 which was more slowly relieved during membrane repolarization. Both the inhibition and disinhibition time course could be well fitted by a single exponential function with the time constants decreasing with increasing positivity for the inhibition (e -fold per about 12 mV) and approximately linearly decreasing with increasing negativity for the disinhibition. At a constant SK&F 96365 concentration, the degree of cationic current inhibition was a sigmoidal function of the membrane potential with a potential of half-maximal increase positive to about +30 mV and a slope factor of about ,13 mV. Increasing the duration of voltage steps at ,80 or at 80 mV, increased the percentage inhibition; the degree of inhibition was almost identical at both potentials providing evidence that the same cationic channel was responsible for the cationic current both at negative and at positive potentials. It is concluded that the distinctive and unique mode of SK&F 96365 action on the muscarinic receptor cationic channel is a valuable tool in future molecular biology studies of this channel. British Journal of Pharmacology (2000) 129, 695,702; doi:10.1038/sj.bjp.0703115 [source] |