Home About us Contact | |||
Cultures Able (culture + able)
Selected AbstractsPhysiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbonsJOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2004C.E. Dandie Abstract Aim:, The aim of this study was to further characterize a bacterial culture (VUN 10,010) capable of benzo[a]pyrene cometabolism. Methods and Results:, The bacterial culture, previously characterized as a pure culture of Stenotrophomonas maltophilia (VUN 10,010), was found to also contain another bacterial species (Mycobacterium sp. strain 1B), capable of degrading a similar range of PAH substrates. Analysis of its 16S rRNA gene sequence and growth characteristics revealed the strain to be a fast-growing Mycobacterium sp., closely related to other previously isolated PAH and xenobiotic-degrading mycobacterial strains. Comparison of the PAH-degrading characteristics of Mycobacterium sp. strain 1B with those of S. maltophilia indicated some similarities (ability to degrade phenanthrene and pyrene), but some differences were also noted (S. maltophilia able to degrade fluorene, but not fluoranthene, whereas Mycobacterium sp. strain 1B can degrade fluoranthene, but not fluorene). Unlike the S. maltophilia culture, there was no evidence of benzo[a]pyrene degradation by Mycobacterium sp. strain 1B, even in the presence of other PAHs (ie pyrene) as co-metabolic substrates. Growth of Mycobacterium sp. strain 1B on other organic carbon sources was also limited compared with the S. maltophilia culture. Conclusions:, This study isolated a Mycobacterium strain from a bacterial culture capable of benzo[a]pyrene cometabolism. The Mycobacterium strain displays different PAH-degrading characteristics to those described previously for the PAH-degrading bacterial culture. It is unclear what role the two bacterial strains play in benzo[a]pyrene cometabolism, as the Mycobacterium strain does not appear to have endogenous benzo[a]pyrene degrading ability. Significance and Impact of the Study:, This study describes the isolation and characterization of a novel PAH-degrading Mycobacterium strain from a PAH-degrading culture. Further studies utilizing this strain alone, and in combination with other members of the consortium, will provide insight into the diverse roles different bacteria may play in PAH degradation in mixed cultures and in the environment. [source] Evolution of a degradative bacterial consortium during the enrichment of naphtha solventJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2000L. Cavalca A microbial mixed culture able to degrade naphtha solvent, a model of hydrocarbon aromatic mixture, was isolated from a hydrocarbon-polluted soil. Composition of the population was monitored by phenotypic and molecular methods applied on soil DNA, on whole enrichment culture DNA, and on 85 isolated strains. Strains were characterized for their 16S rDNA restriction profiles and for their random amplified polymorphic DNA profiles. Catabolic capabilities were monitored by phenotypic traits and by PCR assays for the presence of the catabolic genes methyl mono-oxygenase ( xylA,M), catechol 2,3 dioxygenase (xylE) and toluene dioxygenase (todC1) of TOL and TOD pathways. Different haplotypes belonging to Pseudomonas putida, Ps. aureofaciens and Ps. aeruginosa were found to degrade aromatic compounds and naphtha solvent. The intrinsic catabolic activity of the microbial population of the polluted site was detected by PCR amplification of the xylE gene directly from soil DNA. [source] Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rateJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2005Davide Dionisi Abstract The production of polyhydroxyalkanoates (PHAs) from organic acids by mixed bacterial cultures using a process based on aerobic enrichment of activated sludge, that selects for mixed microbial cultures able to store PHAs at high rates and yields, is described. Enrichment resulted from the selective pressure established by periodic feeding the carbon source in a sequencing batch reactor (SBR); a mixture of acetic, lactic and propionic acids was fed at high frequency (2 hourly), high dilution rate (1 d,1), and at high organic load rate (12.75 g chemical oxygen demand (COD) L,1 d,1). The performance of the SBR was assessed by microbial biomass and PHA production as well as the composition and polymer content of the biomass. A final batch stage was used to increase the polymer concentration of the excess sludge produced in the SBR and in which the behaviour of the biomass was investigated by determining PHA production rates and yields. The microbial biomass selected in the SBR produced PHAs at high rate [278 mg PHAs (as COD) g biomass (as COD),1 h,1, with a yield of 0.39 mg PHAs (as COD) mg removed substrates (as COD),1], reaching a polymer content higher than 50% (on a COD basis). The stored polymer was the copolymer poly(3-hydroxybutyrate/3-hydroxyvalerate) [P(HB/HV)], with an HV fraction of 18% mol mol,1. The microbial community selected in the SBR was analysed by DGGE (denaturing gradient gel electrophoresis). The operating conditions of the SBR were shown to select for a restricted microbial population which appeared quite different in terms of composition with respect to the initial microbial cenosis in the activated sludge used as inoculum. On the basis of the sequencing of the major bands in the DGGE profiles, four main genera were identified: a Methylobacteriaceae bacterium, Flavobacterium sp, Candidatus Meganema perideroedes, and Thauera sp. The effects of nitrogen depletion (ie absence of growth) and pH variation were also investigated in the batch stage and compared with the SBR operative mode. Absence of growth did not stimulate higher PHA production, so indicating that the periodic feed regime fully exploited the storage potential of the enriched culture. Polymer production rates remained high between pH 6.5 and 9.5, whereas the HV content in the stored polymer strongly increased as the pH value increased. This study shows that polymer composition in the final batch stage can readily be controlled independently from the feed composition in the SBR. Copyright © 2005 Society of Chemical Industry [source] Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Suyin Yang Abstract The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 µM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C,U],PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic,anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ. Biotechnol. Bioeng. 2009;102: 81,90. © 2008 Wiley Periodicals, Inc. [source] Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactorBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006Davide Dionisi Abstract This article studies the operation of a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) at different applied organic load rates (OLRs). The process is based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. A mixture of acetic, lactic, and propionic acids at different concentrations (in the range 8.5,31.25 gCOD/L) was fed every 2 h in a sequencing batch reactor (SBR). The resulting applied OLR was in the range 8.5,31.25 gCOD/L/day. Even though, as expected, the increase in the OLR caused an increase in biomass concentration (up to about 8.7 g COD/L), it also caused a relevant decrease of maximal polymer production rate. This decrease in polymer production rate was related to the different extent of "feast and famine" conditions, as function of the applied OLR and of the start-up conditions. As a consequence the best performance of the process was obtained at an intermediate OLR (20 gCOD/L/day) where both biomass productivity and PHA storage were high enough. However, at this high OLR the process was unstable and sudden decrease of performance was also observed. The sludge characterized by the highest PHA storage response was investigated by 16S rDNA clone library. The clone library contained sequences mostly from PHA producers (e.g., Alcaligenes and Comamonas genera); however many genera and among them, one of the dominant (Thauera), were never described before in relation to PHA storage response. © 2005 Wiley Periodicals, Inc. [source] |