Home About us Contact | |||
Cumulative Rainfall (cumulative + rainfall)
Selected AbstractsClimate-driven decrease in erosion in extant Mediterranean badlandsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010Michèle L. Clarke Abstract Badland areas provide some of the highest erosion rates globally. Most studies of erosion have insufficient lengths of record to interrogate the impacts of decadal-scale changes in precipitation on rates of badland erosion in regions such as the Mediterranean, which are known to be sensitive to land degradation and desertification. Erosion measurements, derived from field monitoring using erosion pins, in southern Italy during the period 1974,2004 are used to explore the impacts of changing precipitation patterns on badland erosion. Erosion on badland inter-rill areas is strongly correlated with cumulative rainfall over each monitoring period. Annual precipitation has a substantial dynamic range, but both annual and winter (December, January, February) rainfall amounts in southern Italy show a steady decrease over the period 1970,2000. The persistence of positive values of the winter North Atlantic Oscillation index in the period 1980,2000 is correlated with a reduction in the winter rainfall amounts. Future climate scenarios show a reduction in annual rainfall across the western and central Mediterranean which is likely to result in a further reduction in erosion rates in existing badlands. Copyright © 2010 John Wiley & Sons, Ltd. [source] Leaching of copper, chromium, and boron from treated timber during aboveground exposureENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2006Ana I. García-Valcárcel Abstract Field studies were conducted to evaluate leaching of Cu, Cr, and B from timber treated with a Cr, Cu, and B wood preservative and exposed aboveground in Spanish weathering conditions during one year with a total rainfall of approximately 500 mm. The effect of timber orientation (horizontal for decks and vertical for fences) on metal leaching was assessed. Leaching of metals after one year was higher for decks than for fences, with total amounts of metals leached being 226.6 and 87.8 mg/m2 for Cu, 199.5 and 42.4 mg/m2 for Cr, and 110.1 and 32.6 mg/m2 for B from decks and fences, respectively. Leaching rates did not drop constantly with time, because an increase in metal leaching, except for B, was observed at the end of the year after a long dry period. The order of metal emission varied with cumulative rainfall: Leaching of B was higher than Cr initially, but the opposite occurred at the end of the assay. Total emissions of Cu and Cr obtained in a laboratory assay were lower than those for decks and fences under field conditions when expressed per unit surface area (mg/m2), but they were similar to the values obtained for fences when expressed as a percentage of the initial amount. However, the percentage of B leached from wood was higher in laboratory than in field assays for both orientations, with the amount of B leached per unit surface area under laboratory conditions being higher than that leached from fences but lower than that leached from decks. Emission rates extrapolated to one year from laboratory data underestimated metal leaching from decks and overestimated emissions from fences. [source] Application of a coil-type TDR probe for measuring the volumetric water content in weathered granitic bedrockHYDROLOGICAL PROCESSES, Issue 6 2008Shin'ya Katsura Abstract As a first step toward describing water flow processes in bedrock, a coil-type time domain reflectometry (TDR) probe capable of measuring volumetric water content, ,, in weathered bedrock at three depths was prepared. Because the coil-type TDR probe is large in diameter (19 mm), it can be installed even in highly weathered bedrock more easily and appropriately than conventional TDR probes that consists of two or three rods of small diameter (5-8 mm). The probe calibrations suggest that the values measured by the probe are very sensitive to changes in ,. Using the calibrated probe together with commercially available profile soil moisture sensors, the , profile was monitored for 1 year. Even rainfall events with relatively small cumulative rainfall of 15 mm increased the bedrock ,, and the increments were comparable to those in the soil. After the end of the rainfall events, the bedrock , displayed a more rapid drop than the soil, and varied little during the period of no rainfall. The water storage showed similar tendencies. These observations suggest that the bedrock , is controlled by clearly distinguishable macropores and micropores within the bedrock. It is concluded that the coil-type TDR probe is very effective in determining , in weathered bedrock, and that bedrock, conventionally defined by conducting cone penetration tests and treated as impermeable, does conduct and hold substantial amounts of water, and therefore contribute greatly to hydrological processes in headwater catchments. Copyright © 2007 John Wiley & Sons, Ltd. [source] Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall eventsHYDROLOGICAL PROCESSES, Issue 17 2007Masahiro Kobayashi Abstract Forest soils in Japan are often water repellent. Substantial water repellency frequently occurs and impedes water infiltration into the soil matrix, but continuous overland flow is not necessarily observed because forest soils usually have macropores through which the water can enter the subsoil. Although this flow pattern may influence the manner of water storage in forest soils at the solum scale, field evidence has not yet indicated this process. We monitored soil water storage during natural rainfall events in a 60-cm deep solum using time domain reflectometry (TDR) moisture sensors, and observed stained flow patterns in the soil following simulated rainfall containing a colour dye, on a slope planted with Japanese cypress (Chamaecyparis obtusa). The surface soil at the research plot exhibited strong water repellency at water contents lower than the threshold critical water content of 0·29 m3 m,3. Under dry antecedent moisture conditions, increases in soil water storage were small compared to the cumulative rainfall, despite the low wetness of the soil matrix. In contrast, under moderate moisture conditions, increases in the water content corresponded to the cumulative rainfall. Under dry conditions, rainwater may have entered the subsoil at a few limited locations connected with continuous vertical macropores, such as decayed root channels or interstructural voids. Therefore, the water seemed to bypass a large part of the soil matrix away from the macropores. Such preferential water flow was confirmed by the stained flow patterns after the rainfall simulation. The flow patterns visualized by the dye were discontinuous and scattered under dry conditions and diffuse under moderate moisture conditions. Repellency induced preferential flow led to restricted increases in solum scale water storage during rainfall events, reflecting a physical nonequilibrium in soil water storage. Copyright © 2007 John Wiley & Sons, Ltd. [source] Impact of climate variability on vegetative cover in the Butana area of SudanAFRICAN JOURNAL OF ECOLOGY, Issue 2009Muna Elhag Abstract Climate variability has an impact on the renewable natural resources. This impact is strong in regions with a delicate balance between climate and ecosystem, like the Sahelian regions. Rainfall is the most important climatic factor influencing livelihoods in Butana, north-eastern part of Sudan. All people and their livestock depend on the amount of rainfall that falls and supports plant growth. Butana area experienced severe drought in 1984, 1990 and 2000. Linear relationships between the long-term rainfall and AVHRR/NDVI data were developed for four separate zones in the Butana area. There is a significant correlation between peak NDVI (beginning of September) and cumulative rainfall for July and August, but weak relationships resulted when annual rainfall and cumulative NDVI were used. This is because the NDVI reached a plateau as the rainfall increased, then it remained constant despite further increases in rainfall. The departure from the long-term average of NDVI for each pixel was calculated using the departure average vegetation method. The area had a high percentage of departure during the drought years and the NDVI recovered during the following year when the rainfall was above the average. It can be noted that the area adjacent to the irrigated scheme showed considerable decrease in NDVI. This may be due to overexploitation by the nomads during the drought year. [source] Long-term influence of manure and mineral nitrogen applications on plant and soil 15N and 13C values from the Broadbalk Wheat Experiment,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2008Mehmet Senbayram The Broadbalk Wheat Experiment at Rothamsted Research in the UK provides a unique opportunity to investigate the long-term impacts of environmental change and agronomic practices on plants and soils. We examined the influence of manure and mineral fertiliser applications on temporal trends in the stable N (15N) and C (13C) isotopes of wheat collected during 1968,1979 and 1996,2005, and of soil collected in 1966 and 2000. The soil ,15N values in 1966 and 2000 were higher in manure than the mineral N supplied soil; the latter had similar or higher ,15N values than non-fertilised soil. The straw ,15N values significantly decreased in all N treatments during 1968 to 1979, but not for 1996,2005. The straw ,15N values decreased under the highest mineral N supply (192,kg,N,ha,1,year,1) by 3, from 1968 to 1979. Mineral N supply significantly increased to straw ,13C values in dry years, but not in wet years. Significant correlations existed between wheat straw ,13C values with cumulative rainfall (March to June). The cultivar Hereward (grown 1996,2005) was less affected by changes in environmental conditions (i.e. water stress and fertiliser regime) than Cappelle Desprez (1968,1979). We conclude that, in addition to fertiliser type and application rates, water stress and, importantly, plant variety influenced plant ,13C and ,15N values. Hence, water stress and differential variety response should be considered in plant studies using plant ,13C and ,15N trends to delineate past or recent environmental or agronomic changes. Copyright © 2008 John Wiley & Sons, Ltd. [source] |