Home About us Contact | |||
Critical Assumptions (critical + assumption)
Selected AbstractsSpectrally based remote sensing of river bathymetryEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2009Carl J. Legleiter Abstract This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of a simple, ratio-based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing the accuracy of spectrally based depth retrieval under field conditions via ground-based reflectance measurements; and (4) producing bathymetric maps for a pair of gravel-bed rivers from hyperspectral image data. Consideration of the relative magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth retrieval is appropriate: the remotely sensed signal must be dominated by bottom-reflected radiance. We developed a simple algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is valid and which yield strong, linear relationships between an image-derived quantity X and flow depth d. OBRA of simulated spectra indicated that water column optical properties were accounted for by a shorter-wavelength numerator band sensitive to scattering by suspended sediment while depth information was provided by a longer-wavelength denominator band subject to strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792 to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd. [source] On the importance of estimating detection probabilities from at-sea surveys of flying seabirdsJOURNAL OF AVIAN BIOLOGY, Issue 6 2009Christophe Barbraud The primary and accepted method used to estimate seabird densities at sea from ships is the strip transect method, designed to correct for the effect of random directional bird movement relative to that of the ship. However, this method relies on the critical assumption that all of the birds within the survey strip are detected. We used the distance sampling method from line-transects to estimate detection probability of a number of species of flying seabirds, and to test whether distance from the ship and bird body size affected detectability. Detection probability decreased from 0.987 (SE=0.029) to 0.269 (SE=0.035) with increasing strip half-width from 100 to 1400,m. Detection probability also varied between size-groups of species with strip half-width. For all size-groups, this probability was close to 1 for strip half-width of 100,m, but was 0.869 (SE=0.115), 0.725 (SE=0.096) and 0.693 (SE=0.091) for strip half-width of 300,m, a typical strip width used in seabird surveys, for respectively large, medium and small size flying seabirds. For larger strip half-width, detection probability was higher for large sized species, intermediate for medium sized species and lower for smaller sized species. For strip half-width larger than 100,m we suggest that more attention should be paid to testing the assumption of perfect detectability, because abundance estimates may be underestimated when this assumption is violated. Finally, the effect of the speed of travel of flying seabird on the detection probability was estimated in a simulation study, which suggests that detection probability was underestimated with increasing flying speed. [source] Estimating Evapotranspiration and Seepage for a Sinkhole Wetland From Diurnal Surface-Water Cycles,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2007A. Jason Hill Abstract:, This study used measured diurnal surface-water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface-water cycles were classified into five categories based on the relationship between the surface-water body and the surrounding ground-water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface-water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface-water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland. [source] Estimating soil carbon fluxes following land-cover change: a test of some critical assumptions for a region in Costa RicaGLOBAL CHANGE BIOLOGY, Issue 2 2004Jennifer S. Powers Abstract Changes in soil carbon storage that accompany land-cover change may have significant effects on the global carbon cycle. The objective of this work was to examine how assumptions about preconversion soil C storage and the effects of land-cover change influence estimates of regional soil C storage. We applied three models of land-cover change effects to two maps of preconversion soil C in a 140 000 ha area of northeastern Costa Rica. One preconversion soil C map was generated using values assigned to tropical wet forest from the literature, the second used values obtained from extensive field sampling. The first model of land-cover change effects used values that are typically applied in global assessments, the second and third models used field data but differed in how the data were aggregated (one was based on land-cover transitions and one was based on terrain attributes). Changes in regional soil C storage were estimated for each combination of model and preconversion soil C for three time periods defined by geo-referenced land-cover maps. The estimated regional soil C under forest vegetation (to 0.3 m) was higher in the map based on field data (10.03 Tg C) than in the map based on literature data (8.90 Tg C), although the range of values derived from propagating estimation errors was large (7.67,12.40 Tg C). Regional soil C storage declined through time due to forest clearing for pasture and crops. Estimated CO2 fluxes depended more on the model of land-cover change effects than on preconversion soil C. Cumulative soil C losses (1950,1996) under the literature model of land-cover effects exceeded estimates based on field data by factors of 3.8,8.0. In order to better constrain regional and global-scale assessments of carbon fluxes from soils in the tropics, future research should focus on methods for extrapolating regional-scale constraints on soil C dynamics to larger spatial and temporal scales. [source] Similar Ends, Differing Means: Contractualism and Civil Service Reform in Denmark and New ZealandGOVERNANCE, Issue 1 2004Robert Gregory State sector reform was an integral component of the radical economic and social policy changes enacted by New Zealand governments between 1984 and 1991. This reform replaced the traditional tenured public service with a contractual regime. Through a comparison with Denmark, it is shown that New Zealand's reforms were not unique. Similar reforms were enacted in Denmark. But contrary to what occurred in New Zealand, the Danish reforms had already begun in the 1960s, and have since been gradually expanded. The parallel contractual regimes introduced in the two countries are accounted for by an increasing demand among politicians to secure a civil service that is responsive to political executive demands. However, because of institutional differences and diverging regulatory regimes, the strategic approaches in the two countries have been different. Whereas the New Zealand approach was dominated by an appeal to a coherent and sophisticated body of theoretical knowledge, combined with strict formalization, the Danish strategy has been based on political bargaining with the civil service unions. In both cases the reforms rest on critical assumptions regarding their positive and negative implications. [source] Testing assumptions of mark,recapture theory in the coral reef fish Lutjanus apodusJOURNAL OF FISH BIOLOGY, Issue 3 2008C. L. Wormald This study tested assumptions of the Cormack,Jolly,Seber capture,mark,recapture (CMR) model in a population of the tropical snapper Lutjanus apodus in the central Bahamas using a combination of laboratory and field studies. The suitability of three different tag types [passive integrated transponder (PIT) tag, T-anchor tag and fluorescent dye jet-injected into the fins] was assessed. PIT tags were retained well, whereas T-anchor tags and jet-injected dye were not. PIT tags had no detectable effect on the rates of growth or survival of individuals. The capture method (fish trapping) was found to provide a representative sample of the population; however, a positive trap response was identified and therefore the assumption of equal capture probability was violated. This study illustrates an approach that can be used to test some of the critical assumptions of the CMR theory and it demonstrates that CMR methods can provide unbiased estimates of growth and mortality of L. apodus provided that trap response is explicitly modelled when estimating survival probability. [source] Foraging on spatially distributed resources with sub-optimal movement, imperfect information, and travelling costs: departures from the ideal free distributionOIKOS, Issue 9 2010Shuichi Matsumura Ideal free distribution (IFD) theory offers an important baseline for predicting the distribution of foragers across resource patches. Yet it is well known that IFD theory relies on several over-simplifying assumptions that are unlikely to be met in reality. Here we relax three of the most critical assumptions: (1) optimal foraging moves among patches, (2) omniscience about the utility of resource patches, and (3) cost-free travelling between patches. Based on these generalizations, we investigate the distributions of a constant number of foragers in models with explicit resource dynamics of logistic type. We find that, first, when foragers do not always move to the patch offering maximum intake rate (optimal foraging), but instead move probabilistically according to differences in resource intake rates between patches (sub-optimal foraging), the distribution of foragers becomes less skewed than the IFD, so that high-quality patches attract fewer foragers. Second, this homogenization is strengthened when foragers have less than perfect knowledge about the utility of resource patches. Third, and perhaps most surprisingly, the introduction of travelling costs causes departures in the opposite direction: the distribution of sub-optimal foragers approaches the IFD as travelling costs increase. We demonstrate that these three findings are robust when considering patches that differ in the resource's carrying capacity or intrinsic growth rate, and when considering simple two-patch and more complex multiple-patch models. By overcoming three major over-simplifications of IFD theory, our analyses contribute to the systematic investigation of ecological factors influencing the spatial distribution of foragers, and thus help in deriving new hypotheses that are testable in empirical systems. A confluence of theoretical and empirical studies that go beyond classical IFD theory is essential for improving insights into how animal distributions across resource patches are determined in nature. [source] A Decision Theoretic Model of Public Opinion: Guns, Butter, and European Common DefenseAMERICAN JOURNAL OF POLITICAL SCIENCE, Issue 2 2004Clifford J. Carrubba Why do individuals support the public policies they do? We argue that individuals can have quite sophisticated policy preferences and that not correctly modeling those preferences can lead to critically misspecified empirical models. To substantiate this position we derive and test a decision-theoretic model that relies upon three critical assumptions: (1) policies affect the provision of multiple goods about which individuals care; (2) individuals have diminishing returns to scale in those goods; and (3) preferences over at least some subset of those goods are correlated. Using this model, we demonstrate that arbitrarily small secondary policy effects can confound predictions over primary policy effects. Thus, not considering even arbitrarily small policy effects can cause one to conclude that evidence is consistent with one's theory when in fact it is inconsistent or vice versa. Testing this theory on support for forming a European common defense, we find evidence consistent with our model. [source] Developing a modern pollen,climate calibration data set for NorwayBOREAS, Issue 4 2010ANNE E. BJUNE Bjune, A. E., Birks, H. J. B., Peglar, S. M. & Odland, A. 2010: Developing a modern pollen,climate calibration data set for Norway. Boreas, Vol. 39, pp. 674,688. 10.1111/j.1502-3885.2010.00158.x. ISSN 0300-9483. Modern pollen,climate data sets consisting of modern pollen assemblages and modern climate data (mean July temperature and mean annual precipitation) have been developed for Norway based on 191 lakes and 321 lakes. The original 191-lake data set was designed to optimize the distribution of the lakes sampled along the mean July temperature gradient, thereby fulfilling one of the most critical assumptions of weighted-averaging regression and calibration and its relative, weighted-averaging partial least-squares regression. A further 130 surface samples of comparable taphonomy, taxonomic detail and analyst became available as a result of other projects. These 130 samples, all from new lakes, were added to the 191-lake data set to create the 321-lake data set. The collection and construction of these data sets are outlined. Numerical analyses involving generalized linear modelling, constrained ordination techniques, weighted-averaging partial least-squares regression, and two different cross-validation procedures are used to asses the effects of increasing the size of the calibration data set from 191 to 321 lakes. The two data sets are used to reconstruct mean July temperature and mean annual precipitation for a Holocene site in northwest Norway and a Lateglacial site in west-central Norway. Overall, little is to be gained by increasing the modern data set beyond about 200 lakes in terms of modern model performance statistics, but the down-core reconstructions show less between-sample variability and are thus potentially more plausible and realistic when based on the 321-lake data set. [source] |