CRE

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by CRE

  • cre activity
  • cre expression
  • cre recombinase
  • cre recombinase activity
  • cre recombinase expression
  • cre site

  • Selected Abstracts


    Conflict resolution education and antisocial behavior in U.S. schools: A meta-analysis

    CONFLICT RESOLUTION QUARTERLY, Issue 1 2007
    Wendy M. Garrard
    This meta-analysis examines more than twenty-five years of evidence to determine whether participation in school-based conflict resolution education (CRE) contributes to reduced antisocial behaviors among youth in kindergarten through twelfth grade in U.S. schools. Evidence from thirty-six studies, representing 4,971 students, shows improvements in antisocial behaviors in CRE participants compared to control groups (Effect Size = .26), with larger effects observed during midadolescence ( ES = .53) and early adolescence ( ES = .22) compared to middle childhood ( ES = .06). Improvements in antisocial behavior outcomes attributable to CRE are significant in both practical and statistical terms and are similar for different CRE program approaches. [source]


    Conflict resolution education in the Asian Pacific

    CONFLICT RESOLUTION QUARTERLY, Issue 1 2007
    Bruce E. Barnes
    Conflict Resolution Education (CRE) is taking hold in the Oceania-Island Pacific-East Asia and Southeast Asia region. This article highlights several promising programs from New Zealand-Aotearoa, Singapore, Hong Kong, Fiji, and Australia. Peer mediation programs range from the Cool Schools programs present in more than half of all the schools in New Zealand to newer programs in Singapore. Restorative justice programs are operating in New Zealand, Australia, and Hong Kong. International efforts in both CR and CRE by universities in the region are discussed, highlighting regional centers in South Australia (uniSA) and Queensland (ACPACS). Information is also given about the Asia Pacific Mediation Forum, which will be presenting its third regional conference in June 2008 in Malaysia. [source]


    Conflict resolution in a non-Western context: Conversations with Indonesian scholars and practitioners

    CONFLICT RESOLUTION QUARTERLY, Issue 4 2006
    Brett R. Noel
    This paper describes two sets of U.S. Department of State funded workshops conducted in 2003. The purpose of one set of workshops was to introduce Indonesian educators and community leaders to Western-influenced conflict resolution education (CRE) while the other workshops sought to encourage participants to engage in conflict-focused research adapted to the culture and needs of Indonesia. [source]


    Characterization of the mouse adenylyl cyclase type VIII gene promoter: regulation by cAMP and CREB

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2002
    Jennifer R. Chao
    Abstract Adenylyl cyclase (AC) type VIII has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. In the present study, we directly examined the role for the transcription factor CREB (cAMP response element binding protein) in regulating ACVIII expression by cloning a 5.2 kilobase region upstream of the translation start site of the mouse ACVIII gene. Analysis of this fragment revealed consensus elements for several transcription factors, including a canonical cAMP response element (CRE) in close proximity to the transcription initiation region. Next, ACVIII promoter activity was studied in two neural-derived cell lines and in primary cultures of rat striatal neurons. Activation of the cAMP pathway by forskolin treatment increased promoter activity, and a series of deletion and point mutants demonstrated that this activation is mediated specifically via the canonical CRE site. Gel shift assays confirmed that this site can bind CREB and several CREB family proteins. Further, activation of the ACVIII promoter by forskolin was potentiated by expression of a constitutively active form of CREB, CREB-VP16, whereas it was inhibited by expression of a dominant-negative form of CREB, A-CREB. Finally, over-expression of CREB in vivo, by viral-mediated gene transfer, induced ACVIII promoter activity in the brains of ACVIII-LacZ transgenic mice. These results suggest that the ACVIII gene is regulated by CREB in vitro and in vivo and that this regulation may contribute to CREB-dependent neural plasticity. [source]


    Dopaminergic signalling in the rodent neonatal suprachiasmatic nucleus identifies a role for protein kinase A and mitogen-activated protein kinase in circadian entrainment

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002
    Irina L. Schurov
    Abstract The circadian clock of the suprachiasmatic nuclei (SCN) of perinatal rodents is entrained by maternally derived cues. The SCN of neonatal Syrian hamsters express high-affinity D1 dopamine receptors, and the circadian activity,rest cycle of pups can be entrained by maternal injection of dopaminergic agonists. The present study sought to characterize the intracellular pathways mediating dopaminergic signalling in neonatal rodent SCN. Both dopamine and the D1 agonist SKF81297 caused a dose-dependent increase in phosphorylation of the transcriptional regulator Ca2+/cyclic AMP response element (CRE) binding protein (CREB) in suprachiasmatic GABA-immunoreactive (-IR) neurons held in primary culture. The D1 antagonist SCH23390 blocked this effect. Dopaminergic induction of pCREB-IR in GABA-IR neurons was also blocked by a protein kinase A (PKA) inhibitor, 5,24, and by the MAPK inhibitor, PD98059, whereas KN-62, an inhibitor of Ca2+/calmodulin-dependent (CAM) kinase II/IV was ineffective. Treatment with NMDA increased the level of intracellular Ca2+ in the cultured primary SCN neurons in Mg2+ -free medium, but SKF81297 did not. Blockade of CaM kinase II/IV with KN-62 inhibited glutamatergic induction of pCREB-IR in GABA-IR neurons, whereas 5,24 was ineffective, confirming the independent action of Ca2+ - and cAMP-mediated inputs on pCREB. SKF81297 caused an increase in pERK-IR in SCN cells, and this was blocked by 5,24, indicative of activation of MAPK via D1/cAMP. These results demonstrate that dopaminergic signalling in the neonatal SCN is mediated via the D1-dependent activation of PKA and MAPK, and that this is independent of the glutamatergic regulation via Ca2+ and CaM kinase II/IV responsible for entrainment to the light/dark cycle. [source]


    Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm

    FEBS JOURNAL, Issue 21 2004
    Yoshiko Katoh
    Salt-inducible kinase-1 (SIK1) is phosphorylated at Ser577 by protein kinase A in adrenocorticotropic hormone-stimulated Y1 cells, and the phospho-SIK1 translocates from the nucleus to the cytoplasm. The phospho-SIK1 is dephosphorylated in the cytoplasm and re-enters the nucleus several hours later. By using green-fluorescent protein-tagged SIK1 fragments, we found that a peptide region (586,612) was responsible for the nuclear localization of SIK1. The region was named the ,RK-rich region' because of its Arg- and Lys-rich nature. SIK1s mutated in the RK-rich region were localized mainly in the cytoplasm. Because SIK1 represses cAMP-response element (CRE)-mediated transcription of steroidogenic genes, the mutants were examined for their effect on transcription. To our surprise, the cytoplasmic mutants strongly repressed the CRE-binding protein (CREB) activity, the extent of repression being similar to that of SIK1(S577A), a mutant localized exclusively in the nucleus. Several chimeras were constructed from SIK1 and from its isoform SIK2, which was localized mainly in the cytoplasm, and they were examined for intracellular localization as well as CREB-repression activity. A SIK1-derived chimera, where the RK-rich region had been replaced with the corresponding region of SIK2, was found in the cytoplasm, its CREB-modulating activity being similar to that of wild-type SIK1. On the other hand, a SIK2-derived chimera with the RK-rich region of SIK1 was localized in both the nucleus and the cytoplasm, and had a CREB-repressing activity similar to that of the wild-type SIK2. Green fluorescent protein-fused transducer of regulated CREB activity 2 (TORC2), a CREB-specific co-activator, was localized in the cytoplasm and nucleus of Y1 cells, and, after treatment with adrenocorticotropic hormone, cytoplasmic TORC2 entered the nucleus, activating CREB. The SIK1 mutants, having a strong CRE-repressing activity, completely inhibited the adrenocorticotropic hormone-induced nuclear entry of green fluorescent protein-fused TORC2. This suggests that SIK1 may regulate the intracellular movement of TORC2, and as a result modulates the CREB-dependent transcription activity. Together, these results indicate that the RK-rich region of SIK1 is important for determining the nuclear localization and attenuating CREB-repressing activity, but the degree of the nuclear localization of SIK1 itself does not necessarily reflect the degree of SIK1-mediated CREB repression. [source]


    Molecular and functional characterization of novel CRFR1 isoforms from the skin

    FEBS JOURNAL, Issue 13 2004
    Alexander Pisarchik
    In our continued studies on corticotropin releasing factor receptor (CRFR1) signaling in the skin, we tested functional activity of CRFR1,, e, f, g and h isoforms after transfection to COS cells. Both membrane-bound and soluble variants are translated in vivo into final protein products that undergo further post-translational modifications. CRFR1, was the only isoform coupled directly to adenylate cyclase with the exception of an artificial isoform (CRFR1h2) with the insertion of 37 amino acids between the ligand binding domain and the first extracellular loop that was capable of producing detectable levels of cyclic AMP (cAMP). Soluble isoforms could modulate cell response with CRFR1e attenuating and CRFR1h amplifying CRFR1,-coupled cAMP production stimulated by urocortin. Testing with plasmids containing the luciferase reporter gene, and inducible cis -elements (CRE, CaRE, SRE, AP1 or NF-,B) demonstrated that only CRFR1, was involved directly in the transcriptional regulation, while CRFR1g inhibited CRE activity. Significantly higher reporter gene expression by CRF was observed than that mediated by 4,-phorbol 12-myristate 13-acetate and forskolin alone, being compatible with the concomitant treatment by phorbol 12-myristate 13-acetate and forskolin. This suggests that both protein kinase A and C can be involved in CRF-dependent signal transduction. [source]


    A survey of H2 gene sequences, including new wild-derived genes

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 1 2007
    N. A. Mitchison
    Summary A comprehensive collection of mouse major histocompatibility complex (MHC) promoter and exon 2 sequences is here presented and analysed. It covers the three best known class II genes and one class I gene, and includes new wild mouse sequences from the ,w' back-cross strains and from the Jackson collection. All sequences are in GenBank, and the new exon sequences largely confirm previous typing by serology and immune function. As in human leucocyte antigen (HLA), the overall nucleotide diversity is higher in the class II genes, in keeping with their more diverse function. Diversity along the promoters is highest in the region of known transcription factor binding, most notably in and around the CRE and rCAAT sequences. This distribution parallels that of maximum single nucleotide polymorphism impact previously obtained with reporter constructs. Taking into account the low nucleotide diversity of the CIITA promoter, we conclude that MHC promoters are likely to have diversified through co-evolution with their exons, while themselves also directly subject to natural selection. The H2Ebp alleles form a distinct group, associated with their lack of the recombination hot spot located between exon 2 and exon 3. The collection is expected to prove useful in guiding functional and evolutionary studies. [source]


    Tunisian radish extract (Raphanus sativus) enhances the antioxidant status and protects against oxidative stress induced by zearalenone in Balb/c mice

    JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2008
    Jalila Ben Salah-Abbès
    Abstract Radish (Raphanus sativus) is a food plant known worldwide. From antiquity it has been used in folk medicine as a natural drug against many toxicants. Zearalenone (zen) is a non-steroidal estrogenic mycotoxin present in corn and food mixture for farm animals and it is hepatotoxic, hematotoxic, immunotoxic, nephrotoxic and genotoxic. The objectives of the present study were to assess the biological activity of radish extract and to evaluate the protective role of radish extract against the toxicity of zen in female Balb/c mice. Animals were divided into seven groups and treated orally for 10 days as follows: a control, an olive oil group, groups treated with radish extract alone (5, 10 and 15 mg kg,1 b.w.), a group treated with zen (40 mg kg,1 b.w.) and a group treated with zen plus the lowest dose of radish extract. The results indicate that radish extract improved the antioxidant status and had no significant effects on hematological and biochemical parameters tested or histology of the liver and kidney. Treatment with zen results in a significant increase in ALT, AST, ALP, BILT, BILD, CRE accompanied with significant changes in most of hematological parameters and the antioxidant enzyme activities, co-treatment of zen and the radish extract results in a significant reestablishment of hematological, serum biochemical parameters, and the histology of the liver and kidney. These findings suggest that radish extract is safe and can be overcome or, at least, significantly diminish zen effects. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Cyclin D1 as a Target for the Proliferative Effects of PTH and PTHrP in Early Osteoblastic Cells

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2007
    Nabanita S Datta MS
    Abstract PTHrP induced a proliferative cyclin D1 activation in low-density osteoblastic cells. The process was PKA and MAPK dependent and involved both AP-1 and CRE sites. In ectopic ossicles generated from implanted bone marrow stromal cells, PTH upregulated cyclin D1 after acute or intermittent anabolic treatment. These data suggest a positive role of PTH and PTHrP in the cell cycle of early osteoblasts. Introduction: The mechanisms underlying the actions of PTH and its related protein (PTHrP) in osteoblast proliferation, differentiation, and bone remodeling remain unclear. The action of PTH or PTHrP on the cell cycle during osteoblast proliferation was studied. Materials and Methods: Mouse calvarial MC3T3-E1 clone 4 cells were synchronized by serum starvation and induced with 100 nM PTHrP for 2,24 h under defined low serum conditions. Western blot, real-time PCR, EMSAs, and promoter/luciferase assays were performed to evaluate cyclin D1 expression. Pharmacological inhibitors were used to determine the relevant signaling pathways. Ectopic ossicles generated from implanted bone marrow stromal cells were treated with acute (a single 8- or 12-h injection) or intermittent anabolic PTH treatment for 7 days, and RNA and histologic analysis were performed. Results: PTHrP upregulated cyclin D1 and CDK1 and decreased p27 expression. Cyclin D1 promoter/luciferase assays showed that the PTHrP regulation involved both activator protein-1 (AP-1) and cyclic AMP response element binding protein (CRE) sites. AP-1 and CRE double mutants completely abolished the PTHrP effect of cyclin D1 transcription. Upregulation of cyclin D1 was found to be protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) dependent in proliferating MC3T3-E1 cells. In vivo expression of cyclin D1 in ectopic ossicles was upregulated after a single 12-h PTH injection or intermittent anabolic PTH treatment for 7 days in early developing ossicles. Conclusions: These data indicate that PTH and PTHrP induce cyclin D1 expression in early osteoblastic cells and their action is developmental stage specific. [source]


    Regulation of GTP cyclohydrolase I gene transcription by basic region leucine zipper transcription factors

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2005
    Jude Al Sarraj
    Abstract Tetrahydrobiopterin is an essential cofactor for the phenylalanine, tyrosine and tryptophan hydroxylases, and the family of nitric oxide synthases. The initial and rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin is GTP cyclohydrolase I. The proximal promoter of the human GTP cyclohydrolase I gene contains the sequence motif 5,-TGACGCGA-3,, resembling a cAMP response element (CRE). The objective of this study was to analyze the regulation of GTP cyclohydrolase I gene transcription by basic region leucine zipper (bZIP) transcription factors. A constitutively active mutant of the cAMP response element binding (CREB) protein strongly stimulated GTP cyclohydrolase I promoter activity, indicating that the CRE in the context of the GTP cyclohydrolase I gene is functional. Likewise, GTP cyclohydrolase I promoter/luciferase gene transcription was stimulated following nuclear expression of the catalytic subunit of cAMP-dependent protein kinase. Constitutively active mutants of activating transcription factor 2 (ATF2) and c-Jun additionally stimulated GTP cyclohydrolase I promoter activity, but to a lesser extent than the constitutively active CREB mutant. The fact that stress-activated protein kinases target the GTP cyclohydrolase I gene was corroborated by expression experiments involving p38 and MEKK1 protein kinases. We conclude that signaling pathways involving either the cAMP-dependent protein kinase or stress-activated protein kinases converge to the GTP cyclohydrolase I gene. Hence, enzymatic reactions that require tetrahydrobiopterin as cofactor are therefore indirectly controlled by signaling cascades involving the signal-responsive transcription factors CREB, c-Jun, and ATF2. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source]


    Candidate cis -elements for human renin gene expression in the promoter region

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004
    Tadashi Konoshita
    Abstract The regulation of renin gene expression, the rate-limiting enzyme of the system, is thought to be fundamental to the total system. Previously, we mapped six putative cis -elements in the promoter region of the human renin gene with nuclear proteins from human chorionic cells and human renal cortex by DNase I protection assay (footprint A,F). Each footprint contains Ets motif like site (A), HOXñPBX recognition sequence (B), unknown sequence as DNA binding consensus (C), CRE (D), COUP-TFII (ARP-1) motif like site (E), and AGE3 like site (F). Footprint D has been characterized by means of functional studies as the genuine human renin gene CRE interacting with CREB in cooperation with the site of footprint B. To obtain further clues to the specific expression in the promoter region, these putative cis -elements were conducted to a consensus-specific binding assay to compare renin-producing and non-renin-producing cells by EMSA and electromobility super-shift assay. Different sequence-specific DNA/protein binding was obtained among the different cell lines with footprint B site, with COUP-TFII (ARP-1) motif like site and possibly with footprint F site. The results implicate these putative cis -elements and each corresponding trans -factor in the specific expression of the human renin gene in the promoter region. Further functional characterization of these elements would provide important data for a better understanding of human renin gene expression. © 2004 Wiley-Liss, Inc. [source]


    Substance P initiates NFAT-dependent gene expression in spinal neurons

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2006
    V. S. Seybold
    Abstract Persistent hyperalgesia is associated with increased expression of proteins that contribute to enhanced excitability of spinal neurons, however, little is known about how expression of these proteins is regulated. We tested the hypothesis that Substance P stimulation of neurokinin receptors on spinal neurons activates the transcription factor nuclear factor of activated T cells isoform 4 (NFATc4). The occurrence of NFATc4 in spinal cord was demonstrated with RT-PCR and immunocytochemistry. Substance P activated NFAT-dependent gene transcription in primary cultures of neonatal rat spinal cord transiently transfected with a luciferase DNA reporter construct. The effect of Substance P was mediated by neuronal neurokinin-1 receptors that coupled to activation of protein kinase C, l -type voltage-dependent calcium channels, and calcineurin. Interestingly, Substance P had no effect on cyclic AMP response element (CRE)-dependent gene expression. Conversely, calcitonin gene-related peptide, which activated CRE-dependent gene expression, did not activate NFAT signaling. These data provide evidence that peptides released from primary afferent neurons regulate discrete patterns of gene expression in spinal neurons. Because the release of Substance P and calcitonin gene-related peptide from primary afferent neurons is increased following peripheral injury, these peptides may differentially regulate the expression of proteins that underlie persistent hyperalgesia. [source]


    cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1)

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
    E. K. Stachowiak
    Abstract Activation of cAMP signaling pathway and its transcriptional factor cyclic AMP response element binding protein (CREB) and coactivator are key determinants of neuronal differentiation and plasticity. We show that nuclear fibroblast growth factor receptor-1 (FGFR1) mediates cAMP-induced neuronal differentiation and regulates CREB and CREB binding protein (CBP) function in ,-internexin-expressing human neuronal progenitor cells (HNPC). In proliferating HNPC, FGFR1 was associated with the cytoplasm and plasma membrane. Treatment with dB-cAMP induced nuclear accumulation of FGFR1 and caused neuronal differentiation, accompanied by outgrowth of neurites expressing MAP2 and neuron-specific neurofilament-L protein and enolase. HNPC transfected with nuclear/cytoplasmic FGFR1 or non-membrane FGFR1(SP-/NLS), engineered to accumulate exclusively in the cell nucleus, underwent neuronal differentiation in the absence of cAMP stimulation. In contrast, FGFR1/R4, with highly hydrophobic transmembrane domain of FGFR4, was membrane associated, did not enter the nucleus and failed to induce neuronal differentiation. Transfection of tyrosine kinase-deleted dominant negative receptor mutants, cytoplasmic/nuclear FGFR1(TK-) or nuclear FGFR1(SP-/NLS)(TK-), prevented cAMP-induced neurite outgrowth. Nuclear FGFR1 localized in speckle-like domains rich in phosphorylated histone 3 and splicing factors, regions known for active RNA transcription and processing, and activated the neurofilament-L gene promoter. FGFR1(SP-/NLS) transactivated CRE, up-regulated phosphorylation and transcriptional activity of CREB and stimulated the activity of CBP several-fold. Thus, cAMP-induced nuclear accumulation of FGFR1 provides a signal that triggers molecular events leading to neuronal differentiation. [source]


    Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2001
    Martín Cammarota
    In cells from the adrenal medulla, angiotensin II (AII) regulates both the activity and mRNA levels of catecholamine biosynthetic enzymes whose expression is thought to be under the control of cAMP-responsive element (CRE) binding protein (CREB). In this study, we evaluated the effect of AII stimulation on CREB phosphorylation at Ser133 (pCREB) in bovine adrenal chromaffin cells (BACC). We found that AII produces a rapid and AII type-1 receptor (AT1)-dependent increase in pCREB levels, which is blocked by the MEK1/2 inhibitor U0126 but not by H-89, SB203580 or KN-93, suggesting that it is mediated by the extracellular-regulated protein kinases 1 and 2 (ERK1/2) and not by cAMP-dependent protein kinase (PKA), p38 mitogen-activated protein kinase (p38MAPK) or Ca2+/calmodulin-dependent protein kinases (CaMKs) dependent pathways. Gel-shift experiments showed that the increase in pCREB levels is accompanied by an ERK1/2-dependent upregulation of CRE-binding activity. We also found that AII promotes a rapid and reversible increase in the activity of the non-receptor tyrosine kinase Src and that the inhibition of this enzyme completely blocks the AII-induced phosphorylation of ERK1/2, the CREB kinase p90RSK and CREB. Our data support the hypothesis that in BACC, AII upregulates CREB functionality through a mechanism that requires Src-mediated activation of ERK 1/2 and p90RSK. [source]


    Temporal and Spatial Regulation of CRE Recombinase Expression in Gonadotrophin-Releasing Hormone Neurones in the Mouse

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2008
    A. Wolfe
    Gonadotrophin-releasing hormone (GnRH) neurones located within the brain are the final neuroendocrine output regulating the reproductive hormone axis. Their small number and scattered distribution in the hypothalamus make them particularly difficult to study in vivo. The Cre/loxP system is a valuable tool to delete genes in specific cells and tissues. We report the production of two mouse lines that express the CRE bacteriophage recombinase in a GnRH-specific manner. The first line, the GnRH-CRE mouse, contains a transgene in which CRE is under the control of the murine GnRH promoter and targets CRE expression specifically to GnRH neurones in the hypothalamus. The second line, the GnRH-CRETeR mouse, uses the same murine GnRH promoter to target CRE expression to GnRH neurones, but is modified to be constitutively repressed by a tetracycline repressor (TetR) expressed from a downstream tetracycline repressor gene engineered within the transgene. GnRH neurone-specific CRE expression can therefore be induced by treatment with doxycycline which relieves repression by TetR. These GnRH-CRE and GnRH-CRETeR mice can be used to study the function of genes expressed specifically in GnRH neurones. The GnRH-CRETeR mouse can be used to study genes that may have distinct roles in reproductive physiology during the various developmental stages. [source]


    Activity-dependent somatostatin gene expression is regulated by cAMP-dependent protein kinase and Ca2+ -calmodulin kinase pathways

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2010
    Isabel Sánchez-Muñoz
    Abstract Ca2+ influx through L-type voltage-gated Ca2+ channels (L-VSCC) is required for K+ -induced somatostatin (SS) mRNA. Increase in intracellular Ca2+ concentration leads to the activation of cyclic AMP-responsive element binding protein (CREB), a key regulator of SS gene transcription. Several different protein kinases possess the capability of driving CREB upon membrane depolarization. We investigated which of the signalling pathways involved in CREB activation mediates SS gene induction in response to membrane depolarization in cerebrocortical cells exposed to 56 mM K+. Activity dependent phosphorylation of CREB in Ser133 was immunodetected. Activation of CREB was biphasic showing two peaks at 5 and 60 min. The selective inhibitors of extracellular signal related protein kinase/mitogen-activated protein kinase (ERK/MAPK) PD098059, cyclic-AMPdependent protein kinase (cAMP/PKA) H89 and RpcAMPS, and Ca2+/calmodulin-dependent protein kinases (CaMKs) pathways KN62 and KN93 were used to determine the signalling pathways involved in CREB activation. Here we show that the early activation of CREB was dependent on cAMP/PKA along with CaMKs pathways whereas the ERK/MAPK and CaMKs were implicated in the second peak. We observed that H89, RpcAMPS, KN62 and KN93 blocked K+ -induced SS mRNA whereas PD098059 did not. These findings indicate that K+ -induced SSmRNA is mediated by the activation of cAMP/PKA and CaMKs pathways, thus suggesting that the early activation of CREB is involved in the induction of SS by neuronal activity. We also demonstrated, using transient transfections of cerebrocortical cells, that K+ induces the transcriptional regulation of the SS gene through the cAMP-responsive element (CRE) sequence located in the SS promoter. © 2009 Wiley-Liss, Inc. [source]


    Topological resonance energy, bond resonance energy, and circuit resonance energy

    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 1 2008
    Jun-ichi Aihara
    Abstract Circuit resonance energy (CRE) is a key quantity that links energetic and magnetic criteria of aromaticity for a polycyclic ,-system. Topological resonance energy (TRE) correlates well with the sum of CREs for an entire ,-system. We found that bond resonance energy (BRE), so far defined to estimate the degree of kinetic stability for a polycyclic ,-system, also correlates very well with the corresponding quantity defined with CREs. These findings justify the view that graph-theoretical quantities, such as TRE and BRE, can be used safely even though they rely on unrealistic reference structures. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    The Twannberg (Switzerland) IIG iron meteorites: Mineralogy, chemistry, and CRE ages

    METEORITICS & PLANETARY SCIENCE, Issue 2 2009
    Beda A. HOFMANN
    Five additional masses (12 to 2488 g) were recovered between 2000 and 2007 in the area. The different masses show identical mineralogy consisting of kamacite single crystals with inclusions of three types of schreibersite crystals: cm-sized skeletal (10.5% Ni), lamellar (17.2% Ni), and 1,3 × 10 ,m-sized microprismatic (23.9% Ni). Masses I and II were compared in detail and have virtually identical microstructure, hardness, chemical composition, cosmic-ray exposure (CRE) ages, and 10Be and 26Al activities. Bulk concentrations of 5.2% Ni and 2.0% P were calculated. The preatmospheric mass is estimated to have been at least 11,000 kg. The average CRE age for the different Twannberg samples is 230 ± 50 Ma. Detrital terrestrial mineral grains in the oxide rinds of the three larger masses indicate that they oxidized while they were incorporated in a glacial till deposited by the Rhône glacier during the last glaciation (Würm). The find location of mass I is located at the limit of glaciation where the meteorite may have deposited after transport by the glacier over considerable distance. All evidence indicates pairing of the six masses, which may be part of a larger shower as is indicated by the large inferred pre-atmospheric mass. [source]


    Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering

    METEORITICS & PLANETARY SCIENCE, Issue 10 2006
    William K. Hartmann
    Some 80,89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near-surface coherent rock (,102 m deep), whereas Noachian surfaces generally should have ,102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1,2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial-derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic-ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ,45 km, ,19 km, and ,10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties. [source]


    The transcription factor CREM, and cAMP regulate promoter activity of the Na,K-ATPase ,4 isoform

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2006
    Marianna Rodova
    Abstract The Na,K-ATPase is an essential enzyme of the plasma membrane that plays a key role in numerous cell processes that depend on the transcellular gradients of Na+ and K+. Among the various isoforms of the catalytic subunit of the Na,K-ATPase, ,4 exhibits the most limited pattern of expression, being restricted to male germ cells. Activity of ,4 is essential for sperm function, and ,4 is upregulated during spermatogenesis. The present study addressed the transcriptional control of the human Na,K-ATPase ,4 gene, ATP1A4. We describe that a 5, untranslated region of the ATP1A4 gene (designated ,339/+480 based on the ATP1A4 transcription initiation site) has promoter activity in luciferase reporter assays. Computer analysis of this promoter region revealed consensus sites (CRE) for the cyclic AMP (cAMP) response element modulator (CREM). Accordingly, dibutyryl cAMP (db-cAMP) and ectopic expression of CREM,, a testis specific splice variant of CREM were able to activate the ATP1A4 promoter driven expression of luciferase in HEK 293 T, JEG-3 and GC-1 cells. Further characterization of the effect of db-cAMP and CREM, on deleted constructs of the ATP1A4 promoter (,339/+80, and +25/+480), and on the ,339/+480 region carrying mutations in the CRE sites showed that db-cAMP and CREM, effect required the CRE motif located 263 bp upstream the transcription initiation site. EMSA experiments confirmed the CRE sequence as a bonafide CREM, binding site. These results constitute the first demonstration of the transcriptional control of ATP1A4 gene expression by cAMP and by CREM,, a transcription factor essential for male germ cell gene expression. Mol. Reprod. Dev. 73: 1435,1447, 2006. © 2006 Wiley-Liss, Inc. [source]


    Mapping of quantitative trait loci for clinical,chemical traits in swine

    ANIMAL GENETICS, Issue 1 2009
    G. Reiner
    Summary Clinical,chemical traits are diagnostic parameters essential for characterization of health and disease in veterinary practice. The traits show significant variability and are under genetic control, but little is known about the fundamental genetic architecture of this variability, especially in swine. We have identified QTL for alkaline phosphatase (ALP), lactate (LAC), bilirubin (BIL), creatinine (CRE) and ionized sodium (Na+), potassium (K+) and calcium (Ca++) from the serum of 139 F2 pigs from a Meishan/Pietrain family before and after challenge with Sarcocystis miescheriana, a protozoan parasite of muscle. After infection, the pigs passed through three stages representing acute disease, subclinical disease and chronic disease. Forty-two QTL influencing clinical,chemical traits during these different stages were identified on 15 chromosomes. Eleven of the QTL were significant on a genome-wide level; 31 QTL were chromosome-wide significant. QTL showed specific health/disease patterns with respect to the baseline values of the traits as well as the values obtained through the different stages of disease. QTL influencing different traits at different times were found primarily on chromosomes 1, 3, 7 and 14. The most prominent QTL for the investigated clinical,chemical traits mapped to SSC3 and 7. Baseline traits of ALP, LAC, BIL, Ca++ and K+ were influenced by QTL regions on SSC3, 6, 7, 8 and 13. Single QTL explained up to 21.7% of F2 phenotypic variance. Our analysis confirms that variation of clinical,chemical traits is associated with multiple chromosomal regions. [source]


    Crystallization and preliminary X-ray analyses of catabolite control protein A, free and in complex with its DNA-binding site

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2000
    Jan Tebbe
    The catabolite control protein (CcpA) from Bacillus megaterium is a member of the bacterial repressor protein family GalR/LacI. CcpA with an N-terminal His-tag was used for crystallization. Crystals of free CcpA and of CcpA in complex with the putative operator sequence (catabolite responsive elements, CRE) were obtained by vapour-diffusion techniques at 291,K using the hanging-drop method. CcpA crystals grown in the presence of polyethylene glycol 8000 belong to the hexagonal space group P6122 or P6522, with unit-cell parameters a = 74.4, c = 238.8,Å. These crystals diffract X-rays to 2.55,Å resolution and contain one monomer of the homodimeric protein per asymmetric unit. Crystals of the CcpA,CRE complex were obtained with ammonium sulfate as precipitant and belong to the tetragonal space group I4122, with unit-cell parameters a = 125, c = 400,Å and one complex per asymmetric unit. Although these co-crystals grew to a sufficient size, X-ray diffraction was limited to 8,Å resolution. [source]


    Prevalence of colonisation with third-generation cephalosporin-resistant Enterobacteriaceae in ICU patients of Heidelberg University Hospitals

    CLINICAL MICROBIOLOGY AND INFECTION, Issue 5 2004
    H. Von Baum
    Abstract The aim of this study was to assess colonisation and transmission of third-generation cephalosporin-resistant Enterobacteriaceae (CRE) from patients in 16 intensive care units. A prospective, repetitive point prevalence survey was performed over 6 months, involving samples from 1851 patients. CRE were isolated from 186 (10%) patients, with Enterobacter spp. being the most common. Mean point prevalence rates were significantly higher for paediatric wards (22.5%) compared to surgical (8.1%) and medical (5.5%) units. All CRE isolates were typed by pulsed-field gel electrophoresis. Non-outbreak nosocomial transmission rates of these pathogens were calculated as 12.8% for paediatric patients, compared to 6.8% for adult patients, which may reflect differences in sensitivity to overgrowth with resistant bacteria and contact with health care workers. [source]


    Role for primary cilia in the regulation of mouse ovarian function

    DEVELOPMENTAL DYNAMICS, Issue 8 2008
    Ellen T. Johnson
    Abstract Ift88 is a component of the intraflagellar transport complex required for formation and maintenance of cilia. Disruption of Ift88 results in depletion of cilia. The goal of the current study was to determine the role of primary cilia in ovarian function. Deletion of Ift88 in ovary using Cre-Lox recombination in mice resulted in a severe delay in mammary gland development including lack of terminal end bud structures, alterations in the estrous cycle, and impaired ovulation. Because estrogen drives the formation of end buds and Cre was expressed in the granulosa cells of the ovary, we tested the hypothesis that addition of estradiol to the mutant mice would compensate for defects in ovarian function and rescue the mammary gland phenotype. Mammary gland development including the formation of end bud structures resumed in mutant mice that were injected with estradiol. Together the results suggest that cilia are required for ovarian function. Developmental Dynamics 237:2053,2060, 2008. © 2008 Wiley-Liss, Inc. [source]


    Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3 -Cre and complete exclusion of Dnmt3b by chimera formation

    GENES TO CELLS, Issue 3 2010
    Masahiro Kaneda
    In the male and female germ-lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap -Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3 -Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting. We also carried out DNA methylation analysis in the mutant oocytes and embryos and found that hypomethylation of imprinted genes in Dnmt3a -deficient oocytes was directly inherited to the embryos, but repetitive elements were re-methylated during development. Furthermore, we show that Dnmt3b -deficient cells can contribute to the male and female germ-lines in chimeric mice and can produce normal progeny, establishing that Dnmt3b is dispensable for mouse gametogenesis and imprinting. Finally, Dnmt3-related protein Dnmt3L is not only essential for methylation of imprinted genes but also enhances de novo methylation of repetitive elements in growing oocytes. [source]


    A transgenic Cre mouse line for the study of cortical and hippocampal development

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 5 2010
    Wei Zhou
    Abstract Wnt signaling regulates cortical and hippocampal development. In a previous study we found that a particular Wnt receptor, Frizzled9 (Fzd9), was selectively expressed in both the developing and adult hippocampus. Taking advantage of the specificity of this promoter, we generated a transgenic cre mouse line using the putative control elements of the Fzd9 gene. In the Fzd9-cre mice, Cre is mainly detected in the developing cortex and hippocampus and is confined to the CA fields and dentate gyrus in adults. Furthermore, by crossing the Fzd9-cre mouse with the ROSA26 reporter line, we examined the activity of Cre and found that it has very high recombination efficiency. Thus, this mouse line will likely prove to be a useful tool for studying cortical and hippocampal development via activation or inactivation of interesting genes. genesis 48:343,350, 2010. © 2010 Wiley-Liss, Inc. [source]


    Tamoxifen modulates apoptosis in multiple modes of action in CreER mice

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 12 2008
    Hirohide Takebayashi
    Abstract Tamoxifen-inducible Cre (CreER) has become a powerful tool for in vivo manipulation of the genome. Here, we investigated opposing effects of tamoxifen on apoptosis during embryogenesis using Olig2,CreER knock-in mice, namely, tamoxifen-induced apoptosis through CreER-mediated toxicity and cytoprotective activity of tamoxifen independent of CreER. First, we examined tamoxifen-induced apoptosis; in the homozygous mice, we observed region-specific apoptosis in the ventral neural tube, with no obvious increase in the heterozygotes. Next, we detected a cytoprotective effect on apoptosis in the homozygous dorsal root ganglia (DRG). This apoptosis is a secondary phenotype of Olig2 -null mice, as Olig2/CreER is not expressed in the DRG. The cytoprotective effect is DRG-specific, because tamoxifen did not rescue apoptosis in the interdigital mesenchyme. These data indicate that tamoxifen has multiple effects on apoptosis during development and caution that careful examination is necessary when interpreting results obtained from tamoxifen-induced recombination: in Olig2-CreER mice, heterozygotes are usable for lineage-tracing experiment without obvious toxicity, while homozygotes show efficient recombination, despite enhanced apoptosis. genesis 46:775,781, 2008. © 2008 Wiley-Liss, Inc. [source]


    Tissue-specific expression of Cre recombinase from the Tgfb3 locus

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2008
    Liang-Tung Yang
    Abstract Tgfb3, a member of the TGF-, superfamily, is tightly regulated, both spatially and temporally, during embryogenesis. Previous mouse knockout studies have demonstrated that Tgfb3 is absolutely required for normal palatal fusion and pulmonary development. We have generated a novel tool to ablate genes in Tgfb3 -expressing cells by targeting the promoterless Cre-pgk-Neo cassette into exon 1 of the mouse Tgfb3 gene, which generates a functionally null Tgfb3 allele. Using the Rosa26 reporter assay, we demonstrate that Cre -induced recombination was already induced at embryonal day 10 (E10) in the ventricular myocardium, limb buds, and otic vesicles. At E14, robust recombination was detected in the prefusion palatal epithelium. Deletion of the TGF-, type I receptor Alk5 (Tgfbr1) specifically in Tgfb3 expressing cells using the Tgfb3-Cre driver line lead to a cleft palate phenotype similar to that seen in conventional Tgfb3 null mutants. In addition, Alk5/ Tgfb3-Cre mice displayed hydrocephalus, and severe intracranial bleeding due to germinal matrix hemorrhage. genesis 46:112,118, 2008. © 2008 Wiley-Liss, Inc. [source]


    Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre,

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 6 2007
    Teresa Gallardo
    Abstract Cell type-specific genetic modification using the Cre/loxP system is a powerful tool for genetic analysis of distinct cell lineages. Because of the exquisite specificity of Vasa expression (confined to the germ cell lineage in invertebrate and vertebrate species), we hypothesized that a Vasa promoter-driven transgenic Cre line would prove useful for the germ cell lineage-specific inactivation of genes. Here we describe a transgenic mouse line, Vasa-Cre, where Cre is efficiently and specifically expressed in germ cells. Northern analysis showed that transgene expression was confined to the gonads. Cre-mediated recombination with the Rosa26-lacZ reporter was observed beginning at ,e15, and was >95% efficient in male and female germ cells by birth. Although there was a potent maternal effect with some animals showing more widespread recombination, there was no ectopic activity in most adults. This Vasa-Cre transgenic line should thus prove useful for genetic analysis of diverse aspects of gametogenesis and as a general deletor line. genesis 45:413,417, 2007. Published 2007 Wiley-Liss, Inc. [source]