Home About us Contact | |||
Crystallization Phenomena (crystallization + phenomenon)
Selected AbstractsCrystallization effects on autoclave foaming of polycarbonate using supercritical carbon dioxideADVANCES IN POLYMER TECHNOLOGY, Issue 4 2006L. Mascia Abstract In this study, the conditions leading to the formation of cells and to the onset of crystallization of polycarbonate were examined with the use of supercritical carbon dioxide for the production of foams from preforms. Small plaques cut from extruded sheets were treated with supercritical carbon dioxide in an autoclave at temperatures varying from 60 to 200°C and from 4.5 to 30 MPa pressure. Visual observations and stereoscan electron microscopy examination revealed that penetration of supercritical carbon dioxide takes place via the advancing layer mechanism and that, for the particular grade of polycarbonate used in this study, the nucleation of the cells can take place at temperatures as low as 60°C. It requires, however, long treatment times and high pressures, and the growth of foam cells is severely restricted. Nucleation and growth of cells occurred much more readily at somewhat higher temperatures. With treatments at around 80°C, the onset of crystallization started to impose considerable hindrance to the formation of uniform and evenly distributed cells. This becomes increasingly evident at higher temperatures, between 100 and 180°C, owing to the formation of large spherulitic crystalline domains. A very effective nucleation and growth mechanism for the formation of cells was obtained, on the other hand, with treatments at 200°C due to the absence of crystallization phenomena. The degree of crystallinity increased with increasing treatment temperature, and the resulting morphology gave rise to two broad melting peaks. These are displaced to higher temperatures and become closer, merging into one peak with a low-temperature shoulder. These events were monitored by thermal analysis and wide-angle X-ray diffraction examinations. © 2007 Wiley Periodicals, Inc. Adv Polym Techn 25:225,235, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20075 [source] Crystallization Kinetics and X-ray Diffraction of Crystals Formed in Amorphous Lactose, Trehalose, and Lactose/Trehalose MixturesJOURNAL OF FOOD SCIENCE, Issue 5 2005Song Miao ABSTRACT: Effects of storage time and relative humidity on crystallization kinetics and crystal forms produced from freeze-dried amorphous lactose, trehalose, and a lactose/trehalose mixture were compared. Samples were exposed to 4 different relative water vapor pressure (RVP) (44.1%, 54.5%, 65.6%, 76.1%) environments at room temperature. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage humidity. Lactose crystallized as ,-lactose monohydrate, ,-anhydrous, and anhydrous forms of ,- and ,-lactose in molar ratios of 5:3 and 4:1 in lactose and lactose/trehalose systems. Trehalose seemed to crystallize as a mixture of trehalose dihydrate and anhydrate in trehalose and lactose/trehalose systems. The crystal forms in a mixture of lactose and trehalose did not seem to be affected by the component sugars, but crystallization of the component sugars was delayed. Time-dependent crystallization of lactose and trehalose in the lactose-trehalose mixture could be modeled using the Avrami equation. The results indicated that crystallization data are important in modeling of crystallization phenomena and predicting stability of lactose and trehalose-containing food and pharmaceutical materials. Keywords: crystallization, lactose, trehalose, crystal form, X-ray diffraction [source] Evaluation of the Effectiveness of New Compatibilizers Based on EBAGMA-LDPE and EBAGMA-PET Masterbatches for LDPE/PET BlendsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 3 2010Aida Benhamida Abstract The present paper is aimed to evaluate the efficiency of two masterbatches, i.e., EBAGMA/LDPE (MB1) and EBAGMA/PET (MB2) with 50/50 w/w composition, prepared by melt mixing and used as new compatibilizers for blends of LDPE/PET. The morphology, the mechanical and the thermal properties of LDPE/PET/MB1 and LDPE/PET/MB2 ternary blends have been investigated. Morphological investigation by SEM of LDPE/PET/MB1 ternary blends showed a finer dispersion of PET in LDPE matrix with a better interfacial adhesion compared to those of both LDPE/PET/MB2 and binary LDPE/PET blends. The results also indicated a substantial improvement in both elongation at break and impact strength, while the Young's modulus decreased. Moreover, the thermal properties showed a decrease of the crystallization phenomena of PET in LDPE/PET/MB1 blend, thus confirming the good dispersion of PET particles into the continuous phase of LDPE matrix, leading to the conclusion that MB1 could be an efficient compatibilizer for LDPE/PET system. [source] Study on Flow Induced Nano Structures in iPP with Different Molecular Weight and Resulting Strength BehaviorMACROMOLECULAR SYMPOSIA, Issue 1 2010Achim Frick Abstract Polypropylene samples in a wide molecular weight range between approx. 100,kg/mol to 1 600,kg/mol were processed by injection molding to thin walled micro specimens with respect to study shear induced crystallization phenomena under high shear rate and subsequently possible self reinforcement effects. The specimens nano structures were investigated and related deformation behavior under tensile studied. Novel morphologies have been detect and their micromechanical mechanism interpret and summarized. [source] |