Home About us Contact | |||
Crystallite Size (crystallite + size)
Kinds of Crystallite Size Terms modified by Crystallite Size Selected AbstractsSynthesis by the Polymeric Precursor Technique of Bi2Co0.1V0.9O5.35 and Electrical Properties Dependence on the Crystallite Size.CHEMINFORM, Issue 43 2004C. H. Hervoches Abstract For Abstract see ChemInform Abstract in Full Text. [source] The change in characteristics of microcrystalline cellulose during wet granulation using a high-shear mixerJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2001Tatsuya Suzuki The objective of this study was to investigate the mechanism of hard granule formation and to demonstrate the applicability of X-ray diffraction methods for studying the polymeric pharmaceutical excipients. Using a high-shear mixer, microcrystalline cellulose (MCC) was granulated with water as the granulating liquid. The hardness of the MCC granules increased with granulation time and the amount of water added. The specific surface area measured by the N2 adsorption method was reduced during the process. Crystallite size of cellulose, calculated by Scherrer's equation adapted for wide angle X-ray diffraction method, decreased with granulation time and with increasing amounts of water added. Debye plots for X-ray small scattering patterns suggested that the average magnitude of the continuous solid region in MCC granules became significantly greater, whereas the specific surface area of the MCC granules, calculated from Debye plots, became smaller in comparison with that of intact MCC. These findings suggested that the long-chain structures in MCC were disrupted, resulting in smaller units with shorter chain lengths due to the strong shear force of the impeller. These smaller units then form a network within the granules. Thus, MCC granules are strengthened with longer granulation time and greater amounts of water, resulting in a more intricate network. The change in MCC chain length and physical structure can be experimentally detected using the small-angle X-ray scattering and wide-angle powder X-ray diffraction methods. [source] Optical studies on ZnO films prepared by sol-gel methodCRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2009T. Ghosh Abstract A standard sol-gel method was used to deposit ZnO thin films of suitable thickness on glass substrate. The optical characteristics of the visible to infrared range on thermal stress were critically observed. Morphological signature of the films was detected by X-ray diffraction (XRD) and the crystallite size determined by Scherrer method from XRD data were consistent with grain size estimated from spectroscopic data through Meulenkamp equation. The optical band gap value from the transmission spectrum was found to corroborate with the existing works. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Mechanical activation of precursors for nanocrystalline materialsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2003H. Heegn Abstract Nanostructured materials win big scientific interest and increasingly economic meaning through their specific exceptional properties. Precursors that were compacted by pressing and sintering are normally used preparation of materials. In present work, the influence of mechanical activation by grinding on the structure as well as on compacting and sintering behavior of oxides from magnesium, aluminium and silicon has been investigated. Starting materials for each metal oxide differ in microstructure, dispersity, and porosity. The influence of mechanical activation on the destruction of crystalline structure to nanocrystalline, as well as to the amorphous stage and the compaction of powders with nano-particles, as well as structures with nanoscale pores have been compared. The possibilities of the consolidation of nanostructured materials were investigated. The mechanical activation took place in a disc vibration mill. The mechanical activated materials as well as their pressing and their sintering products were characterized by density, particle-sizedistribution, specific surface, pore-structure, microstructure, and crystallite size by X-ray powder diffraction (XRD). The mechanical activation of the model-substances led, in most cases, to an improvement of the compaction properties; thus, this improvement can be achieved with subsequent sintering densities up to 98% of the theoretical density. From these experiments, generalizations transferable to other materials can be made. [source] Identification of Nucleation Center Sites in Thermally Annealed Hydrogenated Amorphous SiliconADVANCED FUNCTIONAL MATERIALS, Issue 14 2009A. Harv Mahan Abstract Utilizing the concepts of a critical crystallite size and local film inhomogeneity, it is shown that nucleation in thermally annealed hydrogenated amorphous silicon occurs in the more well ordered spatial regions in the network, which are defined by the initial inhomogeneous H distributions in the as-grown films. Although the film H evolves very early during annealing, the local film order is largely retained in the still amorphous films even after the vast majority of the H is evolved, and the more well ordered regions which are the nucleation center sites for crystallization are those spatial regions which do not initially contain clustered H, as probed by H NMR spectroscopy. The sizes of these better ordered regions relative to a critical crystallite size determine the film incubation times (the time before the onset of crystallization). Changes in film short range order upon H evolution, and the presence of microvoid type structures in the as grown films play no role in the crystallization process. While the creation of dangling bonds upon H evolution may play a role in the actual phase transformation itself, the film defect densities measured just prior to the onset of crystallization exhibit no trends which can be correlated with the film incubation times. [source] An in situ method for the study of strain broadening using synchrotron X-ray diffractionJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2007C. C. Tang A tensonometer for stretching metal foils has been constructed for the study of strain broadening in X-ray diffraction line profiles. This device, which is designed for use on powder diffractometers and was tested on Station 2.3 at Daresbury Laboratory, allows in situ measurements to be performed on samples under stress. It can be used for data collection in either transmission or reflection modes using either symmetric or asymmetric diffraction geometries. As a test case, measurements were carried out on an 18,µm-thick copper foil experiencing strain levels of up to 5% using both symmetric reflection and symmetric transmission diffraction. All the diffraction profiles displayed peak broadening and asymmetry which increased with strain. The measured profiles were analysed by the fundamental-parameters approach using the TOPAS peak-fitting software. All the observed broadened profiles were modelled by convoluting a refineable diffraction profile, representing the dislocation and crystallite size broadening, with a fixed instrumental profile predetermined using high-quality LaB6 reference powder. The deconvolution process yielded `pure' sample integral breadths and asymmetry results which displayed a strong dependence on applied strain and increased almost linearly with applied strain. Assuming crystallite size broadening in combination with dislocation broadening arising from f.c.c. a/2,110,{111} dislocations, the variation of mechanical property with strain has been extracted. The observation of both peak asymmetry and broadening has been interpreted as a manifestation of a cellular structure with cell walls and cell interiors possessing high and low dislocation densities. [source] Estimation of cobalt coating layer thickness on acicular Fe3O4 powder using HR-TEMJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2001Keitarou Sakai The thicknesses of cobalt coating layers grown on four different types of acicular Fe3O4 particles were estimated from the analysis of lattice images and from the determination of the Co depth profile using high-resolution transmission electron microscopy (HR-TEM) coupled with an energy dispersive X-ray (EDX) analysis system. It was observed that the coating thickness might vary with the crystallite size resulting from the growth mechanism of the coating layer. In this study, two different layer thicknesses, 40,Å and less than 10,Å, were evidenced for crystallite sizes of 390,Å and 350,Å, respectively. [source] Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fittingJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-2 2000J. I. Langford A distribution of crystallite size reduces the width of a powder diffraction line profile, relative to that for a single crystallite, and lengthens its tails. It is shown that estimates of size from the integral breadth or Fourier methods differ from the arithmetic mean of the distribution by an amount which depends on its dispersion. It is also shown that the form of `size' line profiles for a unimodal distribution is generally not Lorentzian. A powder pattern can be simulated for a given distribution of sizes, if it is assumed that on average the crystallites have a regular shape, and this can then be compared with experimental data to give refined parameters defining the distribution. Unlike `traditional' methods of line-profile analysis, this entirely physical approach can be applied to powder patterns with severe overlap of reflections, as is demonstrated by using data for nanocrystalline ceria. The procedure is compared with alternative powder-pattern fitting methods, by using pseudo-Voigt and Pearson VII functions to model individual line profiles, and with transmission electron microscopy (TEM) data. [source] Optical and thermo electrical properties of ZnO nano particle filled polystyreneJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010Mulayam S. Gaur Abstract The study of optical and thermally stimulated electrical properties such as optical band gap, refractive index, X-ray spectra, SEM spectra, thermally stimulated discharge current (TSDC), differential scanning calorimetry (DSC) have been undertaken in ZnO nanoparicle filled polystyrene nanocomposite thin film of 30 ,m thickness. The appearance of single TSDC peak at temperature 408 ± 5 K in nanocomposite samples shows the charge carriers injected from deeper trapping levels. It is due to the modification of surface and bulk properties of polystyrene by filling of ZnO nanoparticles. In other hand, the strong interaction of nanoparticles with polymer matrix is the expected reason of improvement of crystallite size, optical energy band gap, refractive index, TSDC, glass transition temperature, and charge storage. It is confirmed from SEM images that the modifications of these properties are caused by creation of clusters in amorphous,crystalline boundaries of pristine polystyrene. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Synthesis of higher soluble nanostructured polyaniline by vapor-phase polymerization and determination of its crystal structureJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009Sambhu Bhadra Abstract Higher soluble nanostructured polyaniline was prepared by vapor-phase polymerization after passing aniline vapor through an aqueous acidic solution of ammonium persulfate (PANI-V). Polyaniline was also synthesized by the conventional oxidative polymerization method (PANI-C) in an aqueous medium for the comparison of its properties with PANI-V. PANI-V exhibited lower conductivity but higher hydrophilicity and higher solubility (2,3 times) in different solvents, such as tetrahydrofuran, N -methyl-2-pyrrolidone, dimethylsulfoxide, N,N -dimethyl formamide, and m -cresol at room temperature compared with that of PANI-C. The thermal stability of PANI-V was higher than that of PANI-C. In-depth investigations of the crystal structures of PANI-C and PANI-V were performed through powder X-ray diffraction analysis. The PANI-V showed a less ordered structure with a lower crystallinity and crystallite size and with a higher d-spacing and interchain separation compared with PANI-C. The unit cell volume of PANI-V was significantly higher with a greater number of atoms in the unit cell than that of PANI-C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Effect of neutron irradiation on the structural, mechanical, and thermal properties of jute fiberJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008E. Sinha Abstract This article describes the effect of neutron irradiation on jute fiber (Corchorus olitorius). The jute fibers (4.0 tex) were irradiated by fast neutrons with an energy of 4.44 MeV at different fluences ranging from 2 × 109 to 2 × 1013 n/cm2. An important aspect of neutron irradiation is that the fast neutrons can produce dense ionization at deep levels in the materials. Structural analysis of the raw and irradiated fibers were studied by small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. Thermal analysis carried out on the raw and irradiated fibers showed that the thermal stability of the fibers decreased after irradiation. The mechanical properties of the jute fibers were found to decrease after irradiation. The SAXS study showed that the average periodicity transverse to the layer decreased after irradiation, which may have been due to the shrinkage of cellulosic particles constituting the fiber. The residual compressive stress developed in the fiber after irradiation resulted in a decrease in crystallite size as supported by our XRD analysis. Observation with SEM did not indicate any change produced in the surface morphology of the fiber due to irradiation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Synthesis and Mechanism of Ferroelectric Potassium Tantalate Niobate Nanoparticles by the Solvothermal and Hydrothermal ProcessesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2007Nian Wei High-purity KTa0.3Nb0.7O3 nanoparticles have been successfully synthesized by hydrothermal and solvothermal methods. The KOH concentration and the solvent composition have significant effects on the final products. The synthesis mechanism was discussed. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy investigations show that the typical samples solvothermally synthesized are nanosized, well crystallized, and single crystalline. The KTa0.3Nb0.7O3 shows a pseudo-cubic to tetragonal transition with increasing crystallite size. It is believed that supercritical isopropanol plays an important role in synthesizing KTa0.3Nb0.7O3 nanoparticles under milder conditions than the hydrothermal route. The present solvothermal method provides a new potential route for synthesizing ferroelectric potassium tantalate niobate material. [source] Mechanochemical Activation-Assisted Low-Temperature Synthesis of CaZrO3JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2007Guotian Ye Calcium zirconate (CaZrO3, CZ) was prepared using a solid-state reaction with mechanochemical activation through vibro-milling, aiming at completing the reaction CaO+ZrO2=CaZrO3 at relatively low calcination temperatures. Changes in the crystallite size and homogeneity of the mixed components CaO and ZrO2 in the starting mixtures were observed with different milling times. The influence of milling on the incipient temperature of CZ formation and completion of CZ formation was investigated. It is concluded that milling of the reactants for 20 h lowered the incipient temperature of CZ formation from 800° to 600°C, and the temperature of complete CZ formation from above 1100° to 800°C. [source] Mechanical Activation of Tetracalcium PhosphateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2004Uwe Gbureck It was found that prolonged high-energy ball-milling of Hilgenstokite (tetracalcium phosphate, TTCP) resulted in a decrease in both particle and crystallite size, leading to a mechanical activation of the compound. This mechanically activated material demonstrated a high reactivity such that, in contrast to highly crystalline TTCP, a setting reaction with water to nanocrystalline hydroxyapatite (HA) and Ca(OH)2 could be achieved at 37°C. However, crystalline TTCP is practically unreactive at physiologic temperatures because of the formation of a thin HA layer on the particle surface preventing further reaction. [source] B-Site Order,Disorder Transition in Pb(Mg1/3Nb2/3)O3,Pb(Mg1/2W1/2)O3 Triggered by Mechanical ActivationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2002Xingsen Gao B-site cation order,disorder transition induced by mechanical activation was observed in Pb(Mg1/3Nb2/3)O3,Pb(Mg1/2W1/2)O3 (PMN,PMW) solid solution, which was examined using both XRD diffraction and Raman spectroscopic study. The order,disorder transition is composition dependent. Mechanical activation triggers the B-site disordering, which can be steadily recovered by thermal annealing at elevated temperature, i.e., at temperatures around 600°C. Raman spectroscopy demonstrated that there existed tiny ordered microdomains in 0.4PMN·0.6PMW subjected to up to 20 h of mechanical activation, although they cannot be shown by X-ray diffraction. This is a result of the equilibrium between the mechanical destruction and temperature-facilitated recovering at the collision points during mechanical activation. It is therefore unlikely that a complete disordering can be realized in PMN,PMW by mechanical activation. The disordering in PMN,PMW triggered by mechanical activation occurs simultaneously with the refinement in crystallite size at the initial stage of mechanical activation, suggesting that the fragmentation of crystallites is responsible for the order,disorder transition at least during the initial stage of mechanical activation. [source] Synthesis of Dense TiB2 -TiN Nanocrystalline Composites through Mechanical and Field ActivationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2001Jae Won Lee The synthesis of dense nanometric composites of TiN-TiB2 by mechanical and field activation was investigated. Powder mixtures of Ti, BN, and B were mechanically activated through ball milling. Some powders were milled to reduce crystallite size but to avoid initiating a reaction. In other cases powders were milled and allowed to partially react. All these were subsequently reacted in a spark plasma synthesis (SPS) apparatus. The products were composites with equimolar nitride and boride components with relative densities ranging from 90.1% to 97.2%. Crystallite size analyses using the XRD treatments of Williamson-Hall and Halder-Wagner gave crystallite sizes for the TiN and TiB2 components in the range 38.5,62.5 and 31.2,58.8 nm, respectively. Vickers microhardness measurements (at 2 N force) on the dense samples gave values ranging from 14.8 to 21.8 GPa and fracture toughness determinations (at 20 N) resulted in values ranging from 3.32 to 6.50 MPa·m1/2. [source] Low-Temperature Synthesis of Bismuth Titanate Niobate (Bi7Ti4NbO21) Nanoparticles from a Metal-organic Polymeric PrecursorJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000Pedro Durán This paper describes the preparation of homogeneous Bi7Ti4NbO21 single-phase ceramic powders of ,55 nm crystallite size, at temperatures as low as 400°,500°C using a metal citrate complex method based on the Pechini-type reaction route. The thermal decomposition/oxidation of the polymerized resin, as investigated by TG/DTA, XRD, and SEM, led to the formation of a well-defined orthorhombic Bi7Ti4NbO21 compound with lattice parameters a= 0.544, b= 0.540, and c= 2.905 ± 0.0005 nm. Reaction takes place through an intermediate binary phase with a stoichiometry close to Bi20TiO32 which forms between 300° and 375°C. The metal-organic precursor synthesis method, where Bi, Ti, and Nb ions are first chelated to form metal complexes and then polymerized to give a gel, allows control of the Bi/Ti/Nb stoichiometric ratio leading to the rapid formation of nanosized bismuth titanate niobate (Bi7Ti4NbO21) ceramic powders, at temperatures much lower than usually needed by conventional processing of mixed-oxide powders. [source] Formation of Nanometric TiB2 from TiO2JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000Nicholas J. Welham Titanium diboride can be produced by ball-milling a mixture of TiO2, B2O3, and Mg metal for between 10 and 15 h. The reaction was found to be completed during the milling with no evidence of residual Mg. The unwanted phase, MgO, was readily removed by leaching in acid. The leached powder obtained after 15 h milling had a particle size of <200 nm and was highly faceted. The particle size decreased to ,50 nm after 100 h milling and seemed to be relatively monodisperse. Scherrer calculation of the crystallite size showed that the product particles were probably single crystal. [source] Nanosized Barium Titanate Powder by Mechanical ActivationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2000Junmin Xue Mechanical activation, without any additional heat treatment, is used to trigger the formation of a perovskite BaTiO3 phase in an oxide matrix that consists of BaO and TiO2 in a nitrogen atmosphere. The resulting BaTiO3 powder exhibits a well-established nanocrystalline structure, as indicated by phase analysis using X-ray diffractometry. A crystallite size of ,14 nm is calculated, based on the half-width of the BaTiO3 (110) peak, using the Scherrer equation, and an average particle size of 20,30 nm is observed using transmission electron microscopy for the activation-derived BaTiO3 powder. [source] Melt Spinning of Bacterial Aliphatic Polyester Using Reactive Extrusion for Improvement of CrystallizationMACROMOLECULAR BIOSCIENCE, Issue 6 2007Roland Vogel Abstract This paper reports on an attempt to use reactive extrusion with peroxide as a comfortable pathway for improvement of the crystallization of poly(3-hydroxybutyrate) in a melt spinning process. At first, rheological and thermal properties of the modified melts are determined in order to assess the effect of nucleation. Then spinning tests are carried out. Molecular weights and molecular weight distributions of the spun fibers are determined by chromatographic methods. Average crystallite size is measured by wide angle X-ray scattering. Thermal and textile properties of the spun PHB fibers are also determined. An estimation of the improvement of the crystallization in the spinline and of the inhibition of the secondary crystallization in the fibers from the use of the described way of reactive extrusion is given. [source] Enhanced Bactericidal Activity of Modified Titania in Sunlight against Pseudomonas aeruginosa, a Water-Borne PathogenPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2010S. Swetha Photocatalyst-mediated inactivations generate reactive oxygen species and OH radicals, which induce oxidative destruction of membrane integrity, causing damage to membrane phospholipids of gram negative bacteria like Pseudomonas aeruginosa. Nanosized TiO2 was synthesized by gel to crystalline conversion and Zr-doped TiO2 was synthesized by pulverization using appropriate precursor. The doped nanocrystals retained the anatase phase with a marginal increase in crystallite size, averaging at 25 nm. SEM,EDX analysis of the doped sample depicts the substantial growth of grain size with 1.33 atomic weight % of zirconium. The created electron states in the doped sample act as charge carrier traps suppressing recombination which later detraps the same to the surface of the catalyst causing enhanced interfacial charge transfer. Zr-doped TiO2 at the molecular scale exhibits better photocatalytic activity with lower bandgap energy that can respond to visible light. The redshift caused by the dopants in absorption spectra of TiO2 facilitated the nonintrinsic sample to exhibit nearly 2-fold enhancement of photoinactivation in sunlight. Extent of photoinactivation of P. aeruginosa was observed to be complete (100%) within 150 min of sunlight exposure in the presence of modified TiO2. [source] Dispersing silicon nanoparticles in a stirred media mill , investigating the evolution of morphology, structure and oxide formationPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2007A. Reindl Abstract Silicon nanoparticles were dispersed for 24 hours in 1-butanol using a stirred media mill. Via this process intrinsically stable suspensions (in regard to aggregation) of Si nanoparticles were produced after 6 hours of dispersing. The evolution of morphology, particle size and structure was investigated by dynamic light scattering, X-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy as a function of dispersing time. The average crystallite size decreased from about 18 nm down to about 10 nm within 24 hours of milling as determined by X-ray diffraction and Raman scattering measurements. In addition careful analysis of the Raman spectra revealed a decrease of the crystalline volume fraction from 75% down to 24% and a corresponding increase of the amorphous phase. The microstructural development with varying crystallite size and crystalline volume fraction was directly confirmed by transmission electron microscopy measurements. Elemental analysis showed an increase of oxygen content that was directly proportional to the increase in specific surface area of the silicon nanoparticles during the dispersing process. The surface chemistry of the Si nanoparticles was analyzed by diffuse reflectance infrared Fourier transform spectroscopy that indicated vibrational bands of HSi,Si3,xOx, SiOx, and residual 1-butanol. The final product of the dispersing process seems to be a two-phase mixture of amorphous Si and Si nanocrystallites covered with SiOx on the surface. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Influence of annealing temperature on the structural and optical properties of sol,gel prepared ZnO thin filmsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 10 2006Mingsong Wang Abstract Zinc oxide thin films have been prepared via a sol,gel process. The influence of annealing temperature on the structural and optical properties of the ZnO thin films has been investigated. The prepared ZnO thin films had a polycrystalline hexagonal wurtzite structure with no preferred orientation. The annealing temperature had a great effect on the optical properties of the ZnO thin films: the optical band gap became narrow due to the increase in crystallite size and the reduction in amorphous phase amount with increasing annealing temperature. Absorption or desorption of oxygen in the annealing process caused the observed yellow or green emission. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Strong anharmonicity and phonon confinement on the lowest-frequency Raman mode of nanocrystalline anatase TiO2PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 7 2007Kun Gao Abstract We calculated and analyzed the effects of temperature and crystallite size on the Raman properties of nanocrystalline anatase TiO2 by using the related models mentioned previously [Tang and Herman, Phys. Rev. B 43, 2299 (1991); Richter et al., Solid State Commun. 39, 625 (1981)]. The temperature dependence of the Raman spectra of two different crystallite sizes of anatase TiO2 were obtained. Careful measurements of the frequency shifts of Raman modes were carried out at different temperatures. Through fitting the experimental data, pure-volume and the pure-temperature contributions to the frequency shifts of the lowest- and highest-frequency Eg modes, respectively, have been calculated. The results indicated that strongly intrinsic anharmonicity arising from optical-phonon couplings was the origin of hardening upon increasing temperature for the lowest-frequency Raman mode. The phonon-confinement effect on this mode was analyzed and anharmonic shifts of optical phonons with two different kinds of crystallite sizes were also compared. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Characterizations of nanostructured silicon-carbon films deposited on p-layer by PECVDPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 3-4 2010U. Coscia Abstract Nanostructured silicon carbon films composed of silicon nanocrystallites embedded in the amorphous silicon carbon matrix are prepared by a rf-PECVD system at 250 °C from silane and methane gas mixture highly diluted in hydrogen onto 7059 Corning glass and p-layer deposited on tin oxide substrates by varying rf power from 25 to 65 W. The structural and compositional properties of the films have been investigated. The study demonstrates that rf power controls the crystalline fraction as well as the silicon crystallite size and that p-layer/tin oxide structure enhances the nucleation of silicon grains as compared to Corning glass (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] A new approach to calculating powder diffraction patterns based on the Debye scattering equationACTA CRYSTALLOGRAPHICA SECTION A, Issue 1 2010Noel William Thomas A new method is defined for the calculation of X-ray and neutron powder diffraction patterns from the Debye scattering equation (DSE). Pairwise atomic interactions are split into two contributions, the first from lattice-pair vectors and the second from cell-pair vectors. Since the frequencies of lattice-pair vectors can be directly related to crystallite size, application of the DSE is thereby extended to crystallites of lengths up to ~200,nm. The input data correspond to unit-cell parameters, atomic coordinates and displacement factors. The calculated diffraction patterns are characterized by full backgrounds as well as complete reflection profiles. Four illustrative systems are considered: sodium chloride (NaCl), ,-quartz, monoclinic lead zirconate titanate (PZT) and kaolinite. The effects of varying crystallite size on diffraction patterns are calculated for NaCl, quartz and kaolinite, and a method of modelling static structural disorder is defined for kaolinite. The idea of partial diffraction patterns is introduced and a treatment of atomic displacement parameters is included. Although the method uses pair distribution functions as an intermediate stage, it is anticipated that further progress in reducing computational times will be made by proceeding directly from crystal structure to diffraction pattern. [source] Crystallization behavior and mechanical properties of polypropylene/modified carbon black compositesPOLYMER COMPOSITES, Issue 4 2009Ping Zhu Carbon black (CB) modified with small organic molecules was filled in polypropylene (PP) matrix. The crystallization behavior and mechanical properties of PP/modified CB (MCB) composites were investigated. Compared with the original CB, MCB could be dispersed uniformly in smaller particle sizes in PP matrix, and MCB could act as a more effective nucleating, toughening, and reinforcing agent when it was filled in PP at low concentrations. Further increasing of MCB particles in PP matrix resulted in the decrease of impact and tensile strength of PP/MCB composites. It was inferred from DSC results that the existence of CB vand MCB in PP matrix could result in the decrease of crystallite size and degree of perfection of PP. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Melt processing of PA-66/clay, HDPE/clay and HDPE/PA-66/clay nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 6 2004Mahmood Mehrabzadeh Polyamide 66/clay, high-density polyethylene (HDPE)/clay and HDPE/PA66/clay nanocomposites were prepared, using a twin-screw extruder. The nanocomposites were characterized by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), optical microscopy and tensile testing. Effects of processing conditions and clay modifier were evaluated. The results show that exfoliation in the twin-screw extruder is enhanced by the incorporation of mixing and shearing elements and high residence times. Compatibility of the clay modifier with the polymer matrix plays an important role in exfoliation. Clay does not influence the crystal form, melting temperature or crystallinity of PA-66 and HDPE. However, it acts as a nucleation agent, increases marginally the crystallization temperatures, and reduces the crystallite size. Clay in the blend nanocomposites acts as a compatibilizer and changes the morphology of the blend. TEM micrographs suggest the presence of an exfoliated structure in PA-66 and an intercalated structure in HDPE. Polym. Eng. Sci. 44:1152,1161, 2004. © 2004 Society of Plastics Engineers. [source] High char-yielding poly[acrylonitrile- co -(itaconic acid)- co -(methyl acrylate)]: synthesis and propertiesPOLYMER INTERNATIONAL, Issue 8 2005Renjith Devasia Abstract Polyacrylonitrile terpolymers of various compositions consisting of acrylonitrile (AN), itaconic acid (IA) and methyl acrylate (MA) were synthesized by solution polymerization in dimethylsulfoxide. Increase in concentration of either IA or MA retarded the overall polymerization rate and the polymer molecular weight. The system consisting of AN + MA and varying IA concentration was more prone to retardation in comparison with the system composed of AN + IA with variable MA concentration. The retardation factors were quantified. Minor quantities of MA boost the reactivity of IA in the terpolymer system. The terpolymer was richer in MA vis-à-vis the feed. The thermal characteristics of the terpolymer were examined as a function of its composition. In contrast to the copolymer of AN and IA requiring 1,1.5 mol% IA, the terpolymer required an IA content of approximately 2.5 mol% for optimum thermal stability. The polymer with 90 mol% AN, 2.5 mol% IA and 7.5 mol% MA exhibited reasonably good char-forming characteristics and thermal stability. The overall crystallinity and crystallite size of the polymers were found to decrease on incorporation of the comonomers. The ,aromatization index' of the copolymer increased with the temperature of pyrolysis through re-organization of the tetrahydropyridine ladder structure. Copyright © 2005 Society of Chemical Industry [source] Reciprocal-space mapping of epitaxic thin films with crystallite size and shape polydispersityACTA CRYSTALLOGRAPHICA SECTION A, Issue 1 2006A. Boulle A development is presented that allows the simulation of reciprocal-space maps (RSMs) of epitaxic thin films exhibiting fluctuations in the size and shape of the crystalline domains over which diffraction is coherent (crystallites). Three different crystallite shapes are studied, namely parallelepipeds, trigonal prisms and hexagonal prisms. For each shape, two cases are considered. Firstly, the overall size is allowed to vary but with a fixed thickness/width ratio. Secondly, the thickness and width are allowed to vary independently. The calculations are performed assuming three different size probability density functions: the normal distribution, the lognormal distribution and a general histogram distribution. In all cases considered, the computation of the RSM only requires a two-dimensional Fourier integral and the integrand has a simple analytical expression, i.e. there is no significant increase in computing times by taking size and shape fluctuations into account. The approach presented is compatible with most lattice disorder models (dislocations, inclusions, mosaicity, ,) and allows a straightforward account of the instrumental resolution. The applicability of the model is illustrated with the case of an yttria-stabilized zirconia film grown on sapphire. [source] |