Crystalline Solids (crystalline + solid)

Distribution by Scientific Domains


Selected Abstracts


Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol

ADVANCED MATERIALS, Issue 38-39 2009
Shyam Karki
Poor mechanical properties of paracetamol are improved through the strategy of cocrystal formation. Mechanochemical screening by liquid-assisted grinding generated four cocrystals of paracetamol that readily form tablets by direct compression. Computational studies reveal the mechanical properties can be related to structural features, before all the formation of hydrogen-bonded layers. [source]


Models for the treatment of crystalline solids and surfaces

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2004
Karl Jug
Abstract Crystalline solids and surfaces have become a subject of growing interest. The difficulty of a comprehensive description of a variety of phenomena by a single method has led to the development of many models. These models can be classified as nonperiodic and periodic models. The former include free clusters, saturated clusters, and embedded clusters. The latter two models serve to remove the boundary effects of the free clusters. No perfect avoidance of such effects can be achieved in this way. The cyclic cluster model overcomes this difficulty in a natural way. It is periodic with a finite periodicity. An embedding can take into account a long-range effect in ionic crystals. Previous periodic approaches relied on the large unit cell model, which is related to the supercell approach. For perfect crystals the conventional unit cell approach is a well-known standard. However, its disadvantage is the unphysical periodicity of defects, which is avoided in the cyclic cluster model. The present article presents a description of these models together with selective applications to solid-state systems and surfaces. © 2004 Wiley Periodicals, Inc. J Comput Chem 13: 1551,1567, 2004 [source]


Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires

ADVANCED MATERIALS, Issue 2 2009
Brent A. Wacaser
Abstract A review and expansion of the fundamental processes of the vapor,liquid,solid (VLS) growth mechanism for nanowires is presented. Although the focus is on nanowires, most of the concepts may be applicable to whiskers, nanotubes, and other unidirectional growth. Important concepts in the VLS mechanism such as preferred deposition, supersaturation, and nucleation are examined. Nanowire growth is feasible using a wide range of apparatuses, material systems, and growth conditions. For nanowire growth the unidirectional growth rate must be much higher than growth rates of other surfaces and interfaces. It is concluded that a general, system independent mechanism should describe why nanowires grow faster than the surrounding surfaces. This mechanism is based on preferential nucleation at the interface between a mediating material called the collector and a crystalline solid. The growth conditions used mean the probability of nucleation is low on most of the surfaces and interfaces. Nucleation at the collector-crystal interface is however different and of special significance is the edge of the collector-crystal interface where all three phases meet. Differences in nucleation due to different crystallographic interfaces can occur even in two phase systems. We briefly describe how these differences in nucleation may account for nanowire growth without a collector. Identifying the mechanism of nanowire growth by naming the three phases involved began with the naming of the VLS mechanism. Unfortunately this trend does not emphasize the important concepts of the mechanism and is only relevant to one three phase system. We therefore suggest the generally applicable term preferential interface nucleation as a replacement for these different names focusing on a unifying mechanism in nanowire growth. [source]


Informatic calibration of a materials properties database for predictive assessment of mechanically activated disordering potential for small molecule organic solids

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2009
Yannan Lin
Abstract The potential for small molecule organic crystalline materials to become disordered as a result of high shear mechanical processing was investigated. A data-driven model was generated from a database of critical materials properties, which were expected to correlate with the potential of a small molecule organic crystalline solid to become fully disordered by the application of mechanical energy. The model was compared with a previously published disordering model based on fundamental thermodynamic relationships. Samples of 23 crystalline solids were subjected to extensive comminution under controlled temperature conditions; powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) were used to confirm disordering. Logistic regression was used to investigate the significance of each materials property with respect to the prediction of disordering potential. Seven materials properties (glass transition temperature, melting temperature, heat of fusion, crystallographic density, Young's modulus, molar volume and attachment energy) were identified as having a significant correlation with the potential for material disordering. Stepwise multivariate logistic regression was used to further assess the correlation between disordering potential and each of the seven properties. A linear probability model based on two materials properties (glass transition temperature and molar volume) was developed for the prediction of disordering potential. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2696,2708, 2009 [source]


Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2001
Patrick K. Schelling
We present results of molecular-dynamics simulations of the thermal conductivity, ,, of ZrO2 and Y2O3 -stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high-temperature , is typical of a crystalline solid, with the dominant mechanism being phonon-phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well-defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to ,. [source]


Anion Receptors Containing -NH Binding Sites: Hydrogen-Bond Formation or Neat Proton Transfer?

CHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2005
Valeria Amendola Dr.
Abstract When the amide-containing receptor 1+ is in a solution of dimethyl sulfoxide (DMSO) in the presence of basic anions (CH3COO,, F,, H2PO4,), it undergoes deprotonation of the -NH fragment to give the corresponding zwitterion, which can be isolated as a crystalline solid. In the presence of less basic anions (Cl,, Br,, NO3,), 1+ establishes true hydrogen-bond interactions of decreasing intensity. The less acidic receptor 2+ undergoes neat proton transfer with only the more basic anions CH3COO, and F,, and establishes hydrogen-bond interactions with H2PO4,. An empirical criterion for discerning neutralisation and hydrogen bonding, based on UV/Vis and 1H NMR spectra, is proposed. [source]


Pyrimidin-/thiazol-/thiazolin-ylidenamidothiophosphoric dichlorides

HETEROATOM CHEMISTRY, Issue 6 2003
Vijaya Kabra
Nine new amidodichlorothiophosphorus(V) derivatives incorporating pyrimidine, thiazole, and thiazoline rings were obtained by sulfurization of the corresponding aminodichlorophosphines generated in situ from the reaction of the respective N-alkyl-2-aminocycloiminium halide with PCl3 in the presence of triethylamine. These pyrimidin-/thiazol-/thiazolin-ylidenamidothiophosphoric dichlorides were isolated as stable crystalline solids and are well characterized by elemental analysis, NMR, and mass spectroscopy. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:498,502, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10170 [source]


A Simple and Practical Method for the Preparation and Purity Determination of Halide-Free Imidazolium Ionic Liquids

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2006
Claúdia
Abstract The reaction of N -alkylimidazole with alkyl sulfonates at room temperature affords 1,3-dialkylimidazolium alkanesulfonates as crystalline solids in high yields. The alkanesulfonate anions can be easily substituted by a series of other anions [BF4, PF6, PF3(CF2CF3)3, CF3SO3 and N(CF3SO2)2] by simple reaction of anions, salts, or acids in water at room temperature. Extraction with dichloromethane, filtration through a short basic alumina column and solvent evaporation affords the desired ionic liquids in 80,95% yield. The purity (>99.4%) of these ionic liquids can be determined by 1H NMR spectra using the intensity of the 13C satellites of the imidazolium N -methyl group as internal standard. [source]


CMPZ, an algorithm for the efficient comparison of periodic structures

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2006
R. Hundt
The systematic comparison of the atomic structure of solid compounds has become an important task in crystallography, chemistry, physics and materials science, in particular in the context of structure prediction and structure determination of crystalline solids. In this work, an efficient and robust algorithm for the comparison of periodic structures is presented, which is based on the mapping of the point patterns of the two structures into each other. This algorithm has been implemented as the module CMPZ in the structure visualization and analysis program KPLOT. [source]


Thermal analysis of polymer,water interactions and their relation to gas hydrate inhibition

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007
Manika Varma-Nair
Abstract Gas hydrates formed in oil production pipelines are crystalline solids where hydrocarbon gas molecules such as methane, propane, and their mixtures are trapped in a cagelike structure by hydrogen-bonded water molecules to form undesirable plugs. Methanol and glycol are currently used to prevent these plugs via thermodynamic inhibition. Small amounts of water-soluble polymers may provide an alternate approach for preventing gas hydrates. In this study, we expand the fundamental understanding of water,polymer systems with differential scanning calorimetry. Nonfreezable bound water was used to quantify polymer,water interactions and relate them to the chemical structure for a series of polymers, including acrylamides, cyclic lactams, and n -vinyl amides. For good interactions, the water structure needs to be stabilized through hydrophobic interactions. An increased hydrophobicity of the pendant group also appears to favor polymer performance as a gas hydrate inhibitor. Good inhibitors, such as poly(diethyl acrylamide) and poly(N -vinyl caprolactam), also show higher heat capacities, which indicate higher hydrophobicity, than poor performers such as polyzwitterions, in which hydrophilicity dominated. The phase behavior and thermodynamic properties of dilute polymer solutions were also evaluated through measurements of the heat of demixing and lower critical solution temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2642,2653, 2007 [source]


Models for the treatment of crystalline solids and surfaces

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2004
Karl Jug
Abstract Crystalline solids and surfaces have become a subject of growing interest. The difficulty of a comprehensive description of a variety of phenomena by a single method has led to the development of many models. These models can be classified as nonperiodic and periodic models. The former include free clusters, saturated clusters, and embedded clusters. The latter two models serve to remove the boundary effects of the free clusters. No perfect avoidance of such effects can be achieved in this way. The cyclic cluster model overcomes this difficulty in a natural way. It is periodic with a finite periodicity. An embedding can take into account a long-range effect in ionic crystals. Previous periodic approaches relied on the large unit cell model, which is related to the supercell approach. For perfect crystals the conventional unit cell approach is a well-known standard. However, its disadvantage is the unphysical periodicity of defects, which is avoided in the cyclic cluster model. The present article presents a description of these models together with selective applications to solid-state systems and surfaces. © 2004 Wiley Periodicals, Inc. J Comput Chem 13: 1551,1567, 2004 [source]


Informatic calibration of a materials properties database for predictive assessment of mechanically activated disordering potential for small molecule organic solids

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2009
Yannan Lin
Abstract The potential for small molecule organic crystalline materials to become disordered as a result of high shear mechanical processing was investigated. A data-driven model was generated from a database of critical materials properties, which were expected to correlate with the potential of a small molecule organic crystalline solid to become fully disordered by the application of mechanical energy. The model was compared with a previously published disordering model based on fundamental thermodynamic relationships. Samples of 23 crystalline solids were subjected to extensive comminution under controlled temperature conditions; powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) were used to confirm disordering. Logistic regression was used to investigate the significance of each materials property with respect to the prediction of disordering potential. Seven materials properties (glass transition temperature, melting temperature, heat of fusion, crystallographic density, Young's modulus, molar volume and attachment energy) were identified as having a significant correlation with the potential for material disordering. Stepwise multivariate logistic regression was used to further assess the correlation between disordering potential and each of the seven properties. A linear probability model based on two materials properties (glass transition temperature and molar volume) was developed for the prediction of disordering potential. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2696,2708, 2009 [source]


Vibrational spectroscopic studies, conformations and quantum chemical calculations of 3,3,3-trifluoropropyl- silane and 3,3,3-trifluoropropylsilane- d3,

JOURNAL OF RAMAN SPECTROSCOPY, Issue 1-3 2006
Peter Klaeboe
Abstract Infrared spectra of 3,3,3-trifluoropropylsilane (CF3CH2CH2SiH3) and 3,3,3-trifluoropropylsilane- d3 (CF3 CH2CH2SiD3) were obtained in the vapour, liquid, and crystalline solid phases in the range 4000,50 cm,1. Additional spectra in argon matrices at 5 K were recorded before and after annealing to temperatures 20,34 K. Raman spectra of the compounds as liquids were recorded at various temperatures between 296 and 183 K and spectra of the amorphous and crystalline solids were obtained. The spectra revealed the existence of two conformers (anti and gauche) in the fluid phases and in the matrices. When the two vapours were shock-frozen on a cold finger at 78 K, they turned partly crystalline immediately. After subsequent annealing to 140,150 K, ca 7,9 Raman bands of both molecules present in the liquids vanished in the crystal. Similar variations in intensity were observed in the corresponding infrared spectra before and after annealing. The spectra revealed the existence of one conformer (anti) in the crystal. From Raman intensity variations of three independent pairs of anti and gauche bands between 298 and 173 K for the parent compound, and 298 and 183 K for the deuterated analogue, the values ,confHo(gauche,anti) = 4.1 ± 0.3 kJ mol,1 for the parent compound and the same value for the deuterated species were obtained in the liquid state. Annealing experiments in the matrices show that the gauche bands vanish after annealing, demonstrating that the anti conformer also has the lower energy here and that the barrier to gauche , anti inter-conversion is around 5,6 kJ mol,1. The spectra of both conformers have been interpreted in detail. Ab initio and DFT calculations at the HF/6,311G**, B3LYP/6,311 G** and MP2/6,311 G** levels gave optimized geometries, infrared and Raman intensities and vibrational wavenumbers for the anti and gauche conformers. The conformational enthalpy difference derived from the calculations was between 6.0 and 4.1 kJ mol,1 with anti being the low energy conformer. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Solid-state NMR characterization of 69Ga and 71Ga in crystalline solids

MAGNETIC RESONANCE IN CHEMISTRY, Issue 9 2006
Jason T. Ash
Abstract Gallium model systems containing four- and six-coordinate gallium sites have been investigated using solid-state NMR. Measurement of the isotropic chemical shift and electric field gradient (EFG) have been performed at 9.4 T on ,-Ga2O3, ,-Ga2O3, LiGaO2, NaGaO2, KGaO2, Ga2(SO4)3, and LaGaO3 using a variety of techniques on both NMR active nuclei (69Ga and 71Ga) including static, high speed magic-angle spinning (MAS), satellite transition (ST) spectroscopy, and rotor-assisted population transfer (RAPT). The chemical shift is found to correlate well with the coordination number, with four-coordinate gallium having values of approximately 50 ppm and six-coordinate gallium having values near 225 ppm (referenced to 1 M gallium nitrate solution). The magnitude of the EFG is found to be correlated to the distortion of the gallium polyhedra, with the strained systems having EFGs of 3 × 1021 Vm,2 or more, while the less strained systems have values of 1.5 × 1021 Vm,2 or less. A plot of chemical shift versus EFG suggests that solid-state NMR of gallium oxyanions can be more discriminating than liquid state NMR chemical shifts alone. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Preface: phys. stat. sol. (b) 245/3

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2008
Christopher W. Smith
This is the third Special Issue of physica status solidi (b) focusing on materials with a negative Poisson's ratio or other ,anomalous' physical properties. This issue contains selected papers from the First International Conference on Auxetics and Anomalous Systems held at the University of Exeter, UK, on 4,6 September 2006. Around 50 participants from all over the world as well as from a wide range of scientific and engineering disciplines contributed to what was a highly successful conference. This conference follows in the footsteps of two previous workshops held at the Mathematical Research and Conference Centre in B,dlewo near Pozna,, Poland, in 2004 and 2005 [1, 2]. The papers selected for this issue publish recent results obtained for ,anomalous systems' in experiment, theory and computer simulations. In the following we summarize very briefly their contents. Alderson and Coenen compare the performance of auxetic composites to similar systems with conventional positive Poisson's ratios. They find that there are indeed differences which appear to arise from the change of the overall Poisson's ratio of the composite, some beneficial like a rise in impact tolerance at low impact rates, and others deleterious such as the reduced tolerance at higher impact rates. This is one of the first investigations of possible applications for auxetic materials. The two papers by Gaspar and Koenders both examine the effects of disorder upon anomalous properties, especially negative Poisson's ratio. In the first one Gaspar demonstrates how a mean strain estimate fails to predict negative values of Poisson's ratio because of an inability to account for local fluctuations in elastic properties. For instance it is shown that the volume fraction of auxetic regions in an globally auxetic material (measured experimentally) are smaller than a mean strain homogenisation would require. Koenders and Gaspar explore the elastic properties, and especially Poisson's ratio, of a heterogeneous 2D network of bending beams. They predict auxetic behaviour arising from localised disorder in the packing, and therefore effective locally aggregated elastic properties of the beams. In the three articles by Gatt et al. and Grima et al. models based on simple geometry are used to explain the behaviour of seemingly disparate systems, i.e. 2D honeycombs systems and zeolite SiO2 networks. Two papers concerning honeycombs demonstrate relationships between elastic properties and structure and the bounds for auxetic behaviour. The paper concerning the zeolite Natrolite uses numerical force field based energy minimisation methods to simulate the response of this particular zeolite to applied forces and then simplifies the predicted properties even further by considering structural units as rigid 2D polyhedra linked by flexible hinges. In a similar vein, though using a different approach and concerning a very different form of matter, Heyes shows how the heterogeneity in an assembly of particles in a liquid can affect the elastic properties of a liquid and notably the infinite frequency Poisson's ratio. Heyes uses the Molecular Dynamics approach to simulate a Lennard,Jones fluid under various pressures, notably comparing behaviour under positive and negative pressures. In their first paper Jasiukiewicz and co-authors derive elastic constants of 2D crystals for all four classes of 2D crystalline solids: hexagonal (isotropic), quadratic, rectangular, and oblique systems. In their second paper they demonstrate conditions required for auxetic behaviour of 2D crystals. Auxetic solids are further divided into those with some negative Poisson's ratios (auxetic), all negative Poisson's ratios (completely auxetic) and no negative Poisson's ratios (non-auxetic). Lakes and Wojciechowski consider counterintuitive properties of matter, like negative compressibility, negative Poisson's ratio, negative thermal expansion, negative specific heat, and negative pressure. They present and interpret experimental observations of negative bulk modulus in pre-strained foams. They propose also a constrained microscopic model which exhibits negative compressibility. Finally, they solve a very simple thermodynamic model with negative thermal expansion. Martin et al. take a long stride toward a real world application of auxetic materials with a wide ranging study starting with numerical modelling of a wingbox section to experimental testing in a wind tunnel. They show that an auxetic core in a wing box section can allow a passive aero-elastic response which can be tailored by careful design of the core so that camber, and thus drag, is reduced with increasing airspeed but without sacrificing structural integrity. Miller et al. consider another anomalous physical property, negative thermal expansivity, and its application in the form of particulate composites for amelioration of stresses arising from thermal mismatch. They show via experiments that particles with a negative coefficient of thermal expansion may be used as a composite reinforcer to reduce overall thermal expansion and behave according to the standard volume fraction based models. Narojczyk and Wojciechowski examine the effects of disorder upon the bulk elastic properties of 3D fcc soft sphere systems in terms of particle size. Systems, such as colloids, can be thought of in such terms. The study shows that higher order moments of probability distribution do not influence the bulk elastic properties much, but that lower moments such as the standard deviation of particle size influence the elastic properties greatly. The "hardness" of the particle interaction potential is also important in this context. In general, it is shown that the effect of increasing polydispersity is to increase the Poisson's ratio, except the [110] [10] directions. Scarpa and Malischewsky in their paper on Rayleigh waves in auxetic materials show how the Rayleigh wave speed is affected by the Poisson's ratio. The behaviour is complex and depends upon the homogeneity within the material, for instance slowing with decreasing Poisson's ratio in isotropic solids, but showing the reverse trend and increased sensitivity to Poisson's ratio in laminate composites. Scarpa et al. explore the buckling behaviour of auxetic tubes via three types of model, a simple beam mechanics and Eulerian buckling model, a 3D linear elastic FE model and a bespoke non-linear continuum model. The more sophisticated models provide increasing insight into the buckling behaviour though the simple beam model predicts reasonably well in the pre-buckling linear region. Some unexpected and interesting behaviour is predicted by the continuum model as the Poisson's ratio approaches the isotropic limit of ,1, including increasing sensitivity to Poisson's ratio and rapid mode jumping between integer wave numbers. The paper by Shilko et al. presents an analysis of a particular kind of friction joint, a double lap joint, and explores the effects of altering the elastic properties of one component, in particular it's Poisson's ratio. The manuscript introduces the evolution of smart materials from monolithic materials, and the classification of composites exhibiting negative Poisson's ratios. The paper then presents the case of a double lap joint and performs a sensitivity type study, via a 2D FE model, of the effects of changing the elastic properties and degree of anisotropy of one section of the model on various parameters defining the limits of functionality of the joint. The main finding is that an enhanced shear modulus, via a negative Poisson's ratio, can endow such a friction joint with superior performance. Manufacturing of auxetic materials on a commercial scale has proved to be the largest obstacle to their fuller exploitation. The paper by Simkins et al. explores one route for post processing of auxetic polymers fibres produced by a conventional melt extrusion route. Simkins et al. showed that a post process thermal annealing treatment, with carefully optimised parameters, was able to even out otherwise inhomogenous auxetic properties, and moreover improve other elastic and fracture properties often sacrificed for auxetic behaviour. We gratefully acknowledge the support given by the sponsors of the conference, namely the EPSRC of the UK and Auxetic Technologies Ltd. (UK). We also thank the Scientific Committee, the Organising Committee, and all the participants of the conference. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Synthesis and characterization of transition metal complexes of thiophene-2-methylamine: X-ray crystal structure of palladium (II) and platinum (II) complexes and use of palladium(II) complexes as pre-catalyst in Heck and Suzuki cross-coupling reactions

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 11 2009
Murat Aydemir
Abstract The reactions of thiophene-2-(N -diphenylphosphino)methylamine, Ph2PNHCH2 -C4H3S, 1 and thiophene-2-[N,N -bis(diphenylphosphino)methylamine], (Ph2P)2NCH2 -C4H3S, 2, with MCl2(cod) (M = Pd, Pt; cod = 1,5-cyclooctadiene) or [Cu(CH3CN)4]PF6 yields the new complexes [M(Ph2PNHCH2 -C4H3S)2Cl2], M = Pd 1a, Pt 1b, [Cu(Ph2PNHCH2 -C4H3S)4]PF6, 1c, and [M(Ph2P)2NCH2 -C4H3S)Cl2], M = Pd 2a, Pt 2b, {Cu[(Ph2P)2NCH2 -C4H3S]2}PF6, 2c, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P-, 13C-, 1H-NMR and IR spectroscopy and elemental analysis. Furthermore, the solid-state molecular structures of representative palladium and platinum complexes of bis(phosphine)amine, 2a and 2b, respectively, were determined using single crystal X-ray diffraction analysis. The palladium complexes were tested as potential catalysts in the Heck and Suzuki cross-coupling reactions. Copyright © 2009 John Wiley & Sons, Ltd. [source]


From Metallaborane to Borylene Complexes: Syntheses and Structures of Triply Bridged Ruthenium and Tantalum Borylene Complexes

CHEMISTRY - A EUROPEAN JOURNAL, Issue 37 2010
K. Geetharani
Abstract Reaction of [1,2-(Cp*RuH)2B3H7] (1; Cp*=,5 -C5Me5) with [Mo(CO)3(CH3CN)3] yielded arachno -[(Cp*RuCO)2B2H6] (2), which exhibits a butterfly structure, reminiscent of 7 sep B4H10. Compound 2 was found to be a very good precursor for the generation of bridged borylene species. Mild pyrolysis of 2 with [Fe2(CO)9] yielded a triply bridged heterotrinuclear borylene complex [(,3 -BH)(Cp*RuCO)2(,-CO){Fe(CO)3}] (3) and bis-borylene complexes [{(,3 -BH)(Cp*Ru)(,-CO)}2Fe2(CO)5] (4) and [{(,3 -BH)(Cp*Ru)Fe(CO)3}2(,-CO)] (5). In a similar fashion, pyrolysis of 2 with [Mn2(CO)10] permits the isolation of ,3 -borylene complex [(,3 -BH)(Cp*RuCO)2(,-H)(,-CO){Mn(CO)3}] (6). Both compounds 3 and 6 have a trigonal-pyramidal geometry with the ,3 -BH ligand occupying the apical vertex, whereas 4 and 5 can be viewed as bicapped tetrahedra, with two ,3 -borylene ligands occupying the capping position. The synthesis of tantalum borylene complex [(,3 -BH)(Cp*TaCO)2(,-CO){Fe(CO)3}] (7) was achieved by the reaction of [(Cp*Ta)2B4H8(,-BH4)] at ambient temperature with [Fe2(CO)9]. Compounds 2,7 have been isolated in modest yield as yellow to red crystalline solids. All the new compounds have been characterized in solution by mass spectrometry; IR spectroscopy; and 1H, 11B, and 13C,NMR spectroscopy and the structural types were unequivocally established by crystallographic analysis of 2,6. [source]