Cruz Island (cruz + island)

Distribution by Scientific Domains

Kinds of Cruz Island

  • santa cruz island


  • Selected Abstracts


    Adaptive Units for Conservation: Population Distinction and Historic Extinctions in the Island Scrub-Jay

    CONSERVATION BIOLOGY, Issue 2 2005
    KATHLEEN S. DELANEY
    Aphelocoma; diversidad genética especie; endémica; genética de conservación; Islas Channel Abstract:,The Island Scrub-Jay (Aphelocoma insularis) is found on Santa Cruz Island, California, and is the only insular bird species in the continental United States. We typed seven microsatellite loci and sequenced a portion of the mitochondrial DNA control region of Island Scrub-Jays and their closest mainland relative, the Western Scrub-Jay (Aphelocoma californica), to assess levels of variability and effective population size and to examine the evolutionary relationship between the two species. The estimated female effective population size, Nef, of the Island Scrub-Jay was 1603 (90% confidence interval: 1481,1738) and was about 7.5% of the size of the mainland species. Island and Western Scrub-Jays have highly divergent control-region sequences, and the value of 3.14 ± 0.09% sequence divergence between the two species suggests a divergence time of approximately 151,000 years ago. Because the four northern Channel Islands were joined as one large island as recently as 11,000 years ago, extinctions must have occurred on the three other northern Channel islands, Santa Rosa, San Miguel, and Anacapa, highlighting the vulnerability of the remaining population. We assessed the evolutionary significance of four island endemics, including the Island Scrub-Jay, based on both genetic and adaptive divergence. Our results show that the Island Scrub-Jay is a distinct species of high conservation value whose history and adaptive potential is not well predicted by study of other island vertebrates. Resumen:, Aphelocoma insularis se encuentra en la Isla Santa Cruz, California, y es la única especie de ave insular en Estados Unidos continental. Clasificamos siete locus microsatelitales y secuenciamos una porción de la región control del ADN mitocondrial de A. insularis y su pariente continental más cercano A. californica para evaluar niveles de variabilidad y tamaño poblacional efectivo y examinar las relaciones evolutivas entre las dos especies. El tamaño poblacional efectivo de hembras, Neh, de A. insularis fue estimado en 1603 (90% CI: 1481-1738) y fue aproximadamente 7.5% del tamaño de la especie continental. Aphelocoma insularis y A. californica tienen secuencias muy divergentes en la región control, y el valor de divergencia secuencial de 3.14 ± 0.09% entre las dos especies sugiere un tiempo de divergencia de aproximadamente 151,000 años. Debido a que las cuatro Islas Channel estuvieron unidas en una sola isla tan recientemente como hace 11,000 años, deben haber ocurrido extinciones en las otras tres islas Channel, Santa Rosa, San Miguel y Anacapa, acentuando la vulnerabilidad de la población remanente. Evaluamos el significado evolutivo de cuatro especies insulares endémicas incluyendo A. insularis con base en la divergencia genética y adaptativa. Nuestros resultados muestran que A. insularis es una especie distinta de alto valor de conservación, cuya historia y potencial adaptativo no es pronosticado correctamente por el estudio de otros vertebrados insulares. [source]


    Limited phylogeographic structure in the flightless ground beetle, Calathus ruficollis, in southern California

    DIVERSITY AND DISTRIBUTIONS, Issue 5 2007
    Stylianos Chatzimanolis
    ABSTRACT The California Floristic Province is home to more than 8000 species of beetles, yet their geographical patterns of supra- and infraspecific diversity remain largely unexplored. In this paper, we investigate the phylogeography and population demographics of a flightless ground beetle, Calathus ruficollis (Coleoptera: Carabidae), in southern California. We sampled 136 specimens from 25 localities divided into 10 populations using a fragment of the mitochondrial cytochrome oxidase I gene. We tested several hypotheses, including the association of geography with particular clades and populations, the degree of differentiation among regions, and the expansion of populations. Parsimony and Bayesian phylogenetic analyses along with nested clade analysis and amova indicate a deep split between the southern Sierra Nevada population and populations south and west. This split corresponds closely to the split between subspecies C. ruficollis ignicollis (southern Sierra Nevada) and C. ruficollis ruficollis. Populations otherwise exhibit limited geographical structure, though Fst values indicate some local differentiation. Mismatch distributions and Fu's Fs indicate range expansion of several populations, suggesting that some structure may have been obscured by recent exchange. The population of C. ruficollis on Santa Cruz Island, which might have been expected to be isolated, shares several haplotypes with mainland populations, appearing to represent multiple colonizations. [source]


    The behavioural ecology of the island fox (Urocyon littoralis)

    JOURNAL OF ZOOLOGY, Issue 1 2001
    Gary W. Roemer
    Abstract Insular populations typically occur at higher densities, have higher survivorship, reduced fecundity, decreased dispersal, and reduced aggression compared to their mainland counterparts. Insularity may also affect mating system and genetic population structure. However, these factors have not been examined simultaneously in any island vertebrate. Here we report on the ecological, behavioural and genetic characteristics of a small carnivore, the island fox Urocyon littoralis, from Fraser Point, Santa Cruz Island, California. Dispersal distances in island foxes are very low (mean 1.39 km, sd 1.26, range 0.16,3.58 km, n=8). Home-range size is one of the smallest (mean annual home range=0.55 km2, sd 0.2, n= 14) and density is nearly the highest recorded for any canid species (2.4,15.9 foxes/km2). Similar to other fox species, island foxes are distributed as mated pairs that maintain discrete territories. Overlap among mated pairs was always high (mean 0.85, sd 0.05), while overlap among neighbours (mean 0.11, sd 0.13), regardless of sex, was low. Despite this high degree of territoriality, island foxes are not strictly monogamous. Four of 16 offspring whose parents were identified by paternity analysis were a result of extra-pair fertilizations. Mated pairs were unrelated, however, suggesting inbreeding avoidance. Substantial population differentiation was found between the Fraser Point subpopulation and one only 13 km away (Fst= 0.11). We suggest that the primary effect of finite island area is to limit dispersal, which then influences the demography, behaviour and genetic structure of island fox populations. [source]


    Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands

    MOLECULAR ECOLOGY, Issue 20 2010
    ARNAUD BATAILLE
    Abstract Characterization of the fine-scale population dynamics of the mosquito Aedes taeniorhynchus is needed to improve our understanding of its role as a disease vector in the Galapagos Islands. We used microsatellite data to assess the genetic structure of coastal and highland mosquito populations and patterns of gene flow between the two habitats through time on Santa Cruz Island. In addition, we assessed possible associations of mosquito abundance and genetic diversity with environmental variables. The coastal and highland mosquito populations were highly differentiated from each other all year round, with some gene flow detected only during periods of increased precipitation. The results support the hypothesis that selection arising from ecological differences between habitats is driving adaptation and divergence in A. taeniorhynchus, and maintaining long-term genetic differentiation of the populations against gene flow. The highland and lowland populations may constitute an example of incipient speciation in progress. Highland populations were characterized by lower observed heterozygosity and allelic richness, suggesting a founder effect and/or lower breeding site availability in the highlands. A lack of reduction in genetic diversity over time in highland populations suggests that they survive dry periods as dormant eggs. Association between mosquito abundance and precipitation was strong in the highlands, whereas tide height was the main factor affecting mosquito abundance on the coast. Our findings suggests differences in the infection dynamics of mosquito-borne parasites in the highlands compared to the coast, and a higher risk of mosquito-driven disease spread across these habitats during periods of increased precipitation. [source]


    Resilience of Native Plant Community Following Manual Control of Invasive Cinchona pubescens in Galápagos

    RESTORATION ECOLOGY, Issue 2010
    Heinke Jäger
    As invasive plant species are a major driver of change on oceanic islands, their control is an important challenge for restoration ecology. The post-control recovery of native vegetation is crucial for the treatments to be considered successful, but few studies have evaluated the effects of control measures on both target and non-target species. To investigate the efficiency of manual control of Cinchona pubescens and its impacts on the sub-tropical highland vegetation of Santa Cruz Island, Galápagos, vegetation was sampled before and up to two years after control was carried out in permanent sampling plots. Manual control significantly reduced Cinchona density. Due to regeneration from the seed or bud bank, follow-up control is required, however, for long-term success. Despite heavy disturbance from tree uprooting, herbaceous angiosperms were little affected by the control actions, whereas dominant fern species declined in cover initially. Most native, endemic, and other introduced species regained their pre-control levels of cover 2 years after control; some species even exceeded them. The total number of species significantly increased over the study period, as did species diversity. The native highland vegetation appeared to be resilient, recovering to a level probably more characteristic of the pre-invasion state without human intervention after Cinchona control. However, some introduced species seemed to have been facilitated by the control actions, namely Stachys agraria and Rubus niveus. Further monitoring is needed to confirm the long-term nature of vegetation change in the area. [source]


    Possible contemporary evolution in an endangered species, the Santa Cruz Island fox

    ANIMAL CONSERVATION, Issue 2 2009
    H. M. Swarts
    Abstract An ability to mount rapid evolutionary responses to environmental change may be necessary for species persistence in a human-dominated world. We present evidence of the possibility of such contemporary evolution in the anti-predator behaviour of the critically endangered Santa Cruz Island fox Urocyon littoralis. In 1994, golden eagles colonized Santa Cruz Island, CA and devastated the predator-naïve, endemic island fox population by 95% within 10 years. In 1992, just before the arrival of golden eagles, foxes showed substantial diurnal activity, but diurnal activity was 37.0% lower in 2003,2007, after golden eagle colonization; concurrently, overall activity declined and nocturnal activity increased. Moreover, on nearby Santa Catalina Island, where golden eagles were absent but where the fox population recently crashed due to a disease epidemic, remaining foxes were significantly more diurnally active than were those on Santa Cruz Island. The weight of evidence suggests that the change in activity pattern was a response to predation, not to low population density, and that this was probably a heritable rather than a learned behavioural trait. This behavioural change may allow for prolonged island fox persistence, but also potentially represents a loss of behavioural diversity in fox populations. [source]