Crosslinking

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Crosslinking

  • chemical crosslinking

  • Terms modified by Crosslinking

  • crosslinking agent
  • crosslinking copolymerization
  • crosslinking density
  • crosslinking polymerization
  • crosslinking process
  • crosslinking reaction

  • Selected Abstracts


    Primary Cell Adhesion on RGD-Functionalized and Covalently Crosslinked Thin Polyelectrolyte Multilayer Films,

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2005
    C. Picart
    Abstract Polyelectrolyte multilayers (PEMs) are now widely used for biomedical applications. In this work, we investigated the primary osteoblast adhesion properties of PEMs of poly(L -lysine) (PLL), poly(L -glutamic acid) (PGA), poly(alginic acid) (Palg), and poly(galacturonic acid) (Pgal). In order to compensate for the poor adhesion of the as-synthesized films, two kinds of film modifications were achieved: a purely physical modification by film crosslinking, and a chemical modification by grafting a arginine,glycine,aspartic acid (RGD) peptide to PGA. Crosslinking was performed using a water-soluble carbodiimide in combination with N -hydroxysulfosuccinimide (sulfo-NHS) to induce amide formation. This reaction was followed by Fourier-transform IR spectroscopy. For film functionalization, a 15-amino-acid peptide was grafted to PGA and deposited as the top layer of the film. PLL/PGA, PLL/Palg, and PLL/Pgal films were crosslinked or functionalized. The films were tested for both short-term adhesion properties and long-term proliferation of primary osteoblasts. Whereas the effect of film crosslinking on short-term adhesion was moderate, it was much more important for the RGD-functionalized films. On the other hand, the long-term proliferation was the same or even higher for the crosslinked films as compared with the functionalized films. This effect was particularly enhanced for the PLL/Palg and PLL/Pgal films. Finally, we functionalized PLL/PGA that had been crosslinked prior to PGA-RGD deposition. These architectures exhibited even higher short-term adhesion and proliferation. These results clearly show the important role of the physical properties of the films, besides their chemical properties, for the modulation of primary cell-adhesion behavior. [source]


    Organic and aqueous compatible polystyrene,maleic anhydride copolymer ultra-fine fibrous membranes

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009
    Corine Cécile
    Abstract Polystyrene,maleic anhydride copolymer (PSMA, Mv= 700 kDa) was synthesized and efficiently processed into 400 to 600 nm diameter fibers via electrospinning from either 20 wt % dimethylformamide or 25 wt % dimethylsulfoxide solution. Crosslinking of PSMA was effective by adding glycerol and poly(vinyl alcohol) (PVA) (Mw = 31,50 kDa) in the dimethylformamide and dimethylsulfoxide solutions, respectively. The PSMA fibers containing glycerol at 29.4 mol% were auto-crosslinked whereas those with 12.9 mol% (2 wt %) glycerol and 15.4 mol% (0.75 wt %) PVA required heating to induce intermolecular esterification. Heat-induced crosslinking with glycerol was more effective in rendering the PSMA fibrous membranes insoluble in all solvents whereas that with PVA remained soluble in most solvents except for acetone and tetrahydrofuran. The crosslinked fibrous membranes had improved thermally stability and retained physical integrity upon exposure (2 hr at 40°C) to carbon disulfide, the solvent for Friedel-Craft reactions of the styrene moiety. Hydrolysis (0.01N NaOH) of the auto-crosslinked fibrous membrane significantly improved its hydrophilicity by reducing the water contact angles from 90.6° to 62.5° in a matter of seconds. These ultra-high specific surface PSMA fibrous membranes have shown superior organic and aqueous solvent compatibility to be used as highly reactive and easily retrievable supports for solid-phase synthesis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


    Synthesis of comb polymers via grafting-onto macromolecules bearing pendant diene groups via the hetero-Diels-Alder-RAFT click concept

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2010
    Antoine Bousquet
    Abstract Comb polymers were synthesized by the "grafting-onto" method via a combination of Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization and the hetero-Diels-Alder (HDA) cycloaddition. The HDA reactive monomer trans, trans-hexa-2,4-dienylacrylate (ttHA) was copolymerized with styrene via the RAFT process. Crosslinking was minimized by decreasing the monomer concentration,whilst keeping monomer to polymer conversions low,resulting in reactive backbones with on average one reactive pendant diene groups for 10 styrene units. The HDA cycloaddition was performed between the diene functions of the copolymer and a poly(n -butyl acrylate) (PnBA) prepared via RAFT polymerization with pyridin-2-yldithioformate, which can act as a dienophile. The coupling reactions were performed within 24 h at 50 °C and the grafting yield varies from 75% to 100%, depending on the number average molecular weight of the PnBA (3500 g mol,1 < Mn < 13,000 g mol,1) grafted chain and the reaction stoichiometry. The molecular weights of the grafted block copolymers range from 19,000 g mol,1 to 58,000 g mol,1 with polydispersities close to 1.25. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1773,1781, 2010 [source]


    Crosslinking of a polyacrylate bearing a spiroorthoester pendant group with mixtures of diglycidyl ether of bisphenol A and phosphorus-containing glycidyl derivatives

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2007
    J. Canadell
    Abstract The cationic crosslinking of a polyacrylate bearing a spiroorthoester pendant group with mixtures of diglycidyl ether of bisphenol A and three phosphorus-containing glycidyl derivatives was carried out with ytterbium triflate as an initiator. The curing process was monitored with Fourier transform infrared spectroscopy. The thermomechanical and thermogravimetric properties were evaluated. The glass transition temperatures of the obtained materials were, in general, above 100 °C. The incorporation of phosphorus into the network increased the limiting oxygen index values, thus improving the flame retardancy of the materials. During crosslinking, all the crosslinked polymers showed slight shrinkage that was much lower than that observed in conventional epoxy resins. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1920,1930, 2007 [source]


    Crosslinking of PVC formulations treated with UV light

    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 2 2006
    G. Arias
    Typical wire and cable formulations of plasticized Poly(vinyl chloride) were prepared with three different stabilizer systems: Ca/Zn (2:1 or 1:1) and dibasic lead phthalate. The mixtures contained trimethylolpropane trimethacrylate (TMPTMA) as crosslinking agent and a UV photoinitiator (Irgacure 819). Mixtures were dry-blended, then roll-milled and to finally hot-pressed at 180°C to obtain sheets of 1 and 1.5 mm thickness. Small specimens (3 × 3 cm) were irradiated with UV light for up to 10 days while monitoring changes at different time intervals. The presence of TMPTMA in the samples, as expected, influenced the storage modulus (E,) and gel content percentage, specifically for the thinner samples. These results indicated that UV irradiation produced surface crosslinking. The samples with crosslinking agent also reached higher carbonyl index values. The Ca/Zn formulations showed higher mechanical properties with respect to the Pb ones, thus suggesting that during the stabilization period of the Ca/Zn mixtures, an effective crosslinking was promoted. Irregular behavior was observed during the last days of treatment for both types of formulations, thereby suggesting an optimum irradiation time for this procedure. J. VINYL. ADDIT. TECHNOL. 12:49,54, 2006. © 2006 Society of Plastics Engineers. [source]


    Disulfide-Crosslinked Electrospun Poly(, -glutamic acid) Nonwovens as Reduction-Responsive Scaffolds

    MACROMOLECULAR BIOSCIENCE, Issue 6 2009
    Hiroaki Yoshida
    Abstract Novel water-insoluble, and reduction-responsive nonwoven scaffolds were fabricated from , -PGA and tested in cell culture. An electrospinning method was developed to produce scaffolds of fibers with diameters of 0.05,0.5 µm. Crosslinking of the fibers with cystamine in the presence of EDC resulted in water-insoluble , -PGA nonwovens with disulfide crosslinkages. These crosslinked fibers were easily decomposed under physiological conditions using L -cysteine, a biocompatible reductant. In vitro experiments with mouse L929 fibroblasts showed good adhesion onto , -PGA-SS fiber matrices and excellent cell proliferation. These , -PGA-SS nonwovens can be used as novel biocompatible and biodegradable scaffolds with reduction-responsiveness for biomedical or tissue engineering applications. [source]


    Preparation and Characterization of Microwave-treated Carboxymethyl Chitin and Carboxymethyl Chitosan Films for Potential Use in Wound Care Application

    MACROMOLECULAR BIOSCIENCE, Issue 10 2005
    Panya Wongpanit
    Abstract Summary: CM-chitin and CM-chitosan films were successfully crosslinked by microwave treatment. Crosslinking of the microwave-treated CM-chitin films involved mainly the carboxylate and the secondary alcohol groups, while crosslinking of microwave-treated CM-chitosan films involved the carboxylate and the amino groups. In addition, the crystallinity of CM-chitin increased with increasing microwave treatment time, whereas an increase in the crystallinity of the microwave-treated CM-chitosan films was not observed. At a similar percentage of weight loss, the crosslinking of either CM-chitin or CM-chitosan films by microwave treatment required much less stringent condition when compared with the crosslinking by autoclave treatment. Based on both direct and indirect cytotoxicity assays, the cytotoxicity of the microwave-treated CM-chitin films was negative, while that of the microwave-treated CM-chitosan films was positive. Human fibroblasts adhered on the surface of microwave-treated CM-chitosan films much better than on the surface of microwave-treated CM-chitin films. Total amount of protein synthesis of living NHGF cells that were cultured on chitin, microwave-treated CM-chitin, chitosan, microwave-treated CM-chitosan films. [source]


    Polymers from Multifunctional Isocyanates, 15,

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 8 2007
    A Novel Alternating Copolymer Containing an Isocyanate, a Cyanate Group in the Repeating Unit
    Abstract N -(4-cyanatophenyl)maleimide and 2-isocyanato propene were copolymerised to give an alternating copolymer, which is the first example of a polymer having an isocyanate as well as a cyanate reactive functional group in the repeating unit. The polymer analogous reaction with methanol proceeded selectively at the isocyanate groups. Crosslinking of the cyanate-urethane copolymers by cyclotrimerisation of cyanate groups occurred at elevated temperature. Reaction with dibutylamine at 20,°C led to complete reaction of both the cyanate and isocyanate moieties in a non-selective manner. [source]


    Effect of Glutaraldehyde Crosslinking Conditions on the Strength and Water Stability of Wheat Gluten Fibers

    MACROMOLECULAR MATERIALS & ENGINEERING, Issue 7 2008
    Narendra Reddy
    Abstract Regenerated protein fibers from plant proteins including wheat gluten lack the mechanical properties and water stability desired for usual applications. Crosslinking has been used to improve the properties of regenerated proteins fibers. Although glutaraldehyde is commonly used to crosslink proteins, the effect of various crosslinking conditions on the properties of the materials has not been studied. In this work, a systematic study of glutaraldehyde crosslinking conditions of wheat gluten fibers is presented and shows that even low concentrations of glutaraldehyde (0.05%) can improve the strength and water stability of wheat gluten fibers. [source]


    Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 7 2009
    Bin Dong
    Abstract Nanofiber scaffolds of collagen have been fabricated via electrospinning using benign solvent systems as a replacement for 1,1,1,3,3,3 hexafluoro-2-propanol. Simple binary mixtures of phosphate-buffered saline and ethanol have been found to be highly effective for electrospinning. FTIR spectra suggest that the triple helical structure of collagen was conserved after dissolution and electrospinning. Crosslinking of the electrospun collagen scaffolds was achieved with standard methods. [source]


    In situ crosslinked hydrogels formed using Cu(I)-free Huisgen cycloaddition reaction

    POLYMER INTERNATIONAL, Issue 10 2009
    Meredith Clark
    Abstract BACKGROUND: ,Click' chemistry, or the 1,3-dipolar cycloaddition of organic azides with alkynes, has been evaluated for many biomedical purposes; however, its utility in crosslinking hydrogels in situ is limited by the toxicity of the requisite copper(I) catalyst. We report the first use of catalyst-free Huisgen cycloaddition to generate crosslinked hydrogels under physiological conditions using multivalent azide-functionalized polymers and an electron-deficient dialkyne crosslinker. RESULTS: Water-soluble azide-functionalized polymers were crosslinked with an electron-deficient dialkyne crosslinker to form hydrogels at physiological temperature without the addition of copper(I) catalyst. Crosslinking was confirmed using scanning electron microscopy, Fourier transform infrared and 1H NMR analyses. Flow by vial inversion and dynamic rheological methodologies were implemented to evaluate gelation kinetics at 37 °C of variable polymer compositions, concentrations and stoichiometric ratios. Kinetic studies revealed gelation in as little as 12 h at 37 °C, although strong gels that withstand inversion were observed by 1,8 days. CONCLUSION: The ability to form hydrogel networks under mild conditions demonstrates the potential viability of the catalyst-free ,click' crosslinking chemistry for in situ gelling and other biological applications. Further chemical modifications in the crosslinking moieties, as well as polymer and crosslinker conformations, are expected to enhance gelation kinetics to a more biomedically practical rate. Copyright © 2009 Society of Chemical Industry [source]


    Crosslinking of elastomers upon ageing: a kinetic approach based on crystallinity changes followed by DSC

    POLYMER INTERNATIONAL, Issue 6 2003
    Mohamed Baba
    Abstract It was observed that crosslinking reactions resulting both from peroxide decomposition or photoageing at wavelengths longer than 300,nm involve a drastic decrease of the crystallinity of some dienic elastomers, such as polybutadienes (rich in cis 1,4 and 1,2 microstructures) and polycyclo-octene. By comparing precisely the rate of decomposition of dicumyl peroxide and that of the crystallinity decrease, it was possible to show that the kinetics of crystallinity loss observed upon ageing can be identified with that of the crosslinking of elastomers. The results indicate that the crosslinking process can be followed directly by DSC measurement of the crystallization/melting cycle. © 2003 Society of Chemical Industry [source]


    Stabilization of invertase by molecular engineering

    BIOTECHNOLOGY PROGRESS, Issue 1 2010
    Pattamawadee Tananchai
    Abstract Extracellular invertase (EC 3.2.1.26) of Saccharomyces cerevisiae was stabilized against thermal denaturation by intermolecular and intramolecular crosslinking of the surface nucleophilic functional groups with diisocyanate homobifunctional reagents (OCN(CH2)nNCO) of various lengths (n = 4, 6, 8). Crosslinking with 1,4-diisocyanatobutane (n = 4) proved most effective in enhancing thermostability. Stability was improved dramatically by crosslinking 0.5 mg/mL of protein with 30 ,mol/mL of the reagent. Molecular engineering by crosslinking reduced the first-order thermal denaturation constant at 60°C from 1.567 min,1 (for the native enzyme) to 0.437 min,1 (for the stabilized enzyme). Similarly, the best crosslinking treatment increased the activation energy for denaturation from 391 kJ mol,1 (for the native protein) to 466 kJ mol,1 (for the stabilized enzyme). Crosslinking was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


    Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis

    CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2005
    E. Janas
    Summary Rituxan, a chimeric anti-CD20 antibody, is the first antibody approved for immunotherapy in non-Hodgkin's B-cell lymphoma and other B-cell lymphoproliferative disorders. Additionally, efficacy of Rituxan treatment has been reported in nonmalignant autoimmune diseases such as rheumatoid arthritis. Crosslinking of CD20 molecules by Rituxan induces therapeutic B-cell depletion. CD20 is a B-lymphocyte specific integral membrane protein, proposed to function as a store-operated calcium channel, which is activated upon receptor-stimulated calcium depletion of intracellular stores. Crosslinking of CD20 by antibodies has been reported to induce a redistribution of CD20 molecules to specialized microdomains at the plasma membrane known as lipid rafts. Here, we report that in the absence of Rituxan, CD20 exhibits a low affinity to lipid rafts. However, binding of Rituxan significantly increases the affinity of CD20 for lipid rafts resulting in its redistribution to a fraction resistant to Triton X-100 solubilization. Furthermore, we demonstrate that disturbing the raft integrity by cholesterol extraction results in dissociation of CD20 from a Triton X-100 resistant fraction followed by complete inhibition of Rituxan-induced calcium entry and apoptosis. The integrity of lipid rafts seems to play a crucial role for CD20-induced caspase activation. These data show, for the first time, that Rituxan-induced translocation of CD20 to lipid rafts is important for increased intracellular Ca2+ levels and downstream apoptotic signalling. [source]


    Palladin is a novel binding partner for Ena/VASP family members

    CYTOSKELETON, Issue 1 2004
    Malika Boukhelifa
    Abstract Palladin is an actin-associated protein that contains proline-rich motifs within its amino-terminal sequence that are similar to motifs found in zyxin, vinculin, and the Listeria protein ActA. These motifs are known to be potential binding sites for the Vasodilator-Stimulated Phosphoprotein (VASP). Here, we demonstrate that palladin is an additional direct binding partner for VASP, by using co-immunoprecipitation and blot overlay techniques with both endogenous palladin and recombinant myc-tagged palladin. These results show that VASP binds to full-length palladin and also to the amino-terminal half of palladin, where the polyproline motifs are located. Using a synthetic peptide array, two discrete binding sites for VASP were identified within palladin's proline-rich amino-terminal domain. Using double-label immunofluorescence staining of fully-spread and actively-spreading fibroblasts, the extent of co-localization of palladin and VASP was explored. These proteins were found to strongly co-localize along stress fibers, and partially co-localize in focal adhesions, lamellipodia, and focal complexes. These results suggest that the recently described actin-associated protein palladin may play an important role in recruiting VASP to sites of actin filament growth, anchorage, and crosslinking. Cell Motil. Cytoskeleton 58:17,29, 2004. © 2004 Wiley-Liss, Inc. [source]


    The influence of strenuous exercise on collagen characteristics of articular cartilage in Thoroughbreds age 2 years

    EQUINE VETERINARY JOURNAL, Issue 6 2000
    P. A. J. BRAMA
    Summary In order to assess the influence of strenuous exercise on collagen characteristics of articularcartilage, the response of the collagen network was studied in seven 2-year-old Thoroughbreds subjected to strenuous exercise compared to 7 nontrained individuals. After 13 weeks, the animals were subjected to euthanasia, fetlock joints of the forelimbs were scored macroscopically after Indian Ink staining, and articular cartilage from different locations of the articular surface of the proximal first phalanx was sampled and analysed for water content, collagen content, hydroxylysine content and amount of hydroxylysylpyridinoline (HP) crosslinks. Gross lesions were significantly more severe in the exercised than in the nonexercised group. In the control animals, the characteristic site-specific differences in collagen parameters were found as described earlier, but in the strenuously exercised animals this physiological biochemical heterogeneity had disappeared. In the exercised animals, an increase in water content and a sharp decrease in HP crosslinking was found that was correlated with the presence of wear lines. It is concluded that the strenuous exercise provoked significant alterations in the characteristics of the collagen network of the articular cartilage of the fetlock joint which were suggestive of microdamage and loosening of the collagen network. The collagen component of cartilage, in contrast to the proteoglycan component, is known to have a very limited capacity for repairand remodelling due to an extremely low turnover rate. Therefore, alterations within the articular collagen network might be expected to play an important role in the pathophysiology of degenerative joint disorders. [source]


    A new function for LAT and CD8 during CD8-mediated apoptosis that is independent of TCR signal transduction

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2009
    Raedun L. Clarke
    Abstract The majority (>95%) of thymocytes undergo apoptosis during selection in the thymus. Several mechanisms have been proposed to explain how apoptosis of thymocytes that are not positively selected occurs; however, it is unknown whether thymocytes die purely by "neglect" or whether signaling through a cell-surface receptor initiates an apoptotic pathway. We have previously demonstrated that on double positive thymocytes the ligation of CD8 in the absence of TCR engagement results in apoptosis and have postulated this is a mechanism to remove thymocytes that have failed positive selection. On mature single positive T cells CD8 acts as a co-receptor to augment signaling through the TCR that is dependent on the phosphorylation of the adaptor protein, linker for activation of T cells (LAT). Here, we show that during CD8-mediated apoptosis of double positive thymocytes there is an increase in the association of CD8 with LAT and an increase in LAT tyrosine phosphorylation. Decreasing LAT expression and mutation of tyrosine residues of LAT reduced apoptosis upon crosslinking of CD8. Our results identify novel functions for both CD8 and LAT that are independent of TCR signal transduction and suggest a mechanism for signal transduction leading to apoptosis upon CD8 crosslinking. [source]


    Dispersive Effects in Chemomechanical Reactions with Polyallylamine-Derived Hydrogels

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2008
    Kazuaki Kato
    Abstract Volume changes of polyallylamine-derived hydrogels crosslinked with glutaraldehyde are determined with a large variety of effector compounds. Monocarboxylic effectors lead to smaller contractions, in contrast to dicarboxylate structures, which allow more effective non-covalent crosslinking between the positively charged nitrogen centers of the polymer backbone. Electroneutral compounds lead to negligible changes, whereas effectors with either a large p -moiety like in naphthoic acid or phenyl derivatives with polarizable substituents induce large contractions. This finding is in line with significant contributions of van der Waals interactions between the effectors within the hydrogel. Chemomechanical differences between regioisomeric effectors such as p - and o -nitrobenzoic acid are in agreement with independent results of dispersive interactions in related complexes. The volume decrease corresponds almost entirely to the gravimetrically determined water content of the gels. The acidity profile shows a strong contraction above pH 10, which is consistent with the known pK value of such polyamines. NMR spectra of the gels indicate strong binding of the effectors by line broadening, which is significant only for the chemomechanically active compounds. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    The 21st century renaissance of the basophil?

    EXPERIMENTAL DERMATOLOGY, Issue 11 2006
    Current insights into its role in allergic responses, innate immunity
    Abstract:, Basophils and mast cells express all the three subchains of the high-affinity immunoglobulin E (IgE) receptor Fc,RI and contain preformed histamine in the cytoplasmic granules. However, it is increasingly clear that these cells play distinct roles in allergic inflammatory disease. Despite their presence throughout much of the animal kingdom, the physiological function of basophils remains obscure. As rodent mast cells are more numerous than basophils, and generate an assortment of inflammatory cytokines, basophils have often been regarded as minor players in allergic inflammation. In humans, however, basophils are the prime early producers of interleukin (IL)-4 and IL-13, T helper (Th)2-type cytokines crucial for initiating and maintaining allergic responses. Basophils also express CD40 ligand which, in combination with IL-4 and IL-13, facilitates IgE class switching in B cells. They are the main cellular source for early IL-4 production, which is vital for the development of Th2 responses. The localization of basophils in various tissues affected by allergic inflammation has now been clearly demonstrated by using specific staining techniques and the new research is shedding light on their selective recruitment to the tissues. Finally, recent studies have shown that basophil activation is not restricted to antigen-specific IgE crosslinking, but can be caused in non-sensitized individuals by a growing list of parasitic antigens, lectins and viral superantigens, binding to non-specific IgE antibodies. This, together with novel IgE-independent routes of activation, imparts important new insights into the potential role of basophils in both adaptive and innate immunity. [source]


    Novel Crosslinking of High-order and Multiple Copper Twins in Advanced Microelectronics Packaging,

    ADVANCED ENGINEERING MATERIALS, Issue 4 2004
    W. Zhang
    Novel crosslinking of high-order and multiple copper twins has been formed in the metallization/solder interconnect subjected to the thermal aging. This surprising finding may illustrate a universal metallization failure mode. Meanwhile, many copper nanocrystals in situ originated from those twins crosslinking shed a novel light on the synthesis approach to fascinating nanocrystalline metals. [source]


    Asymmmetric Diamino Functionalization of Nanotubes Assisted by BOC Protection and Their Epoxy Nanocomposites

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
    Yao Zhao
    Abstract Homogenous dispersion and strong interfacial bonding are prerequisites for taking full advantage of the mechanical properties of nanotubes in a composite. In order to simultaneously achieve both conditions, a highly efficient and mechanically non-destructive functionalization of nanotubes is developed. With fluoronanotubes as the precursor, asymmetric diamine molecules, N -BOC-1,6-diaminohexane, are used to replace fluorines on the wall of fluoronanotubes and construct covalent bonding to the surface of the nanotubes. A BOC de-protection reaction is conducted and the resulting exposed amino groups create strong covalent bonds with the matrix in the course of epoxy ring-opening etherification and curing chemical reactions. In comparison with the conventional functionalization based on symmetric diamine molecules, the functionalized nanotubes derived from the BOC-protected diamine molecule are more dispersed within the epoxy matrix. Dynamic mechanical analysis shows that the functionalized nanotubes have better crosslinking with the matrix. The composites reinforced by the nanotubes demonstrate improvement in various mechanical properties. The Young's Modulus, ultimate tensile strength, and storage modulus of composites loaded with 0.5 wt% functionalized nanotubes are enhanced by 30%, 25%, and 10%, respectively, compared with the neat epoxy. The increase of the glass transition temperature, as much as 10 °C, makes the composites suited for engineering applications under higher temperatures. The new functionalization method allows for an competitive enhancement in the composite performance in use of relatively low cost raw nanotubes at a small loading level. The reinforcement mechanism of the functionalized nanotubes in the epoxy resin is discussed. [source]


    Definition of the residues required for the interaction between glycine-extended gastrin and transferrin in vitro

    FEBS JOURNAL, Issue 17 2009
    Suzana Kovac
    Transferrin is the main iron transport protein found in the circulation, and the level of transferrin saturation in the blood is an important indicator of iron status. The peptides amidated gastrin(17) (Gamide) and glycine-extended gastrin(17) (Ggly) are well known for their roles in controlling acid secretion and as growth factors in the gastrointestinal tract. Several lines of evidence, including the facts that transferrin binds gastrin, that gastrins bind ferric ions, and that the level of expression of gastrins positively correlates with transferrin saturation, suggest the possible involvement of the transferrin,gastrin interaction in iron homeostasis. In the present work, the interaction between gastrins and transferrin has been characterized by surface plasmon resonance and covalent crosslinking. First, an interaction between iron-free apo-transferrin and Gamide or Ggly was observed. The fact that no interaction was observed in the presence of the chelator EDTA suggested that the gastrin,ferric ion complex was the interacting species. Moreover, removal of ferric ions with EDTA reduced the stability of the complex between apo-transferrin and gastrins, and no interaction was observed between Gamide or Ggly and diferric transferrin. Second, some or all of glutamates at positions 8,10 of the Ggly molecule, together with the C-terminal domain, were necessary for the interaction with apo-transferrin. Third, monoferric transferrin mutants incapable of binding iron in either the N-terminal or C-terminal lobe still bound Ggly. These findings are consistent with the hypothesis that gastrin peptides bind to nonligand residues within the open cleft in each lobe of transferrin and are involved in iron loading of transferrin in vivo. Structured digital abstract ,,MINT-7212832, MINT-7212849: Apo-transferrin (uniprotkb:P02787) and Gamide (uniprotkb:P01350) bind (MI:0407) by surface plasmon resonance (MI:0107) ,,MINT-7212881, MINT-7212909: Ggly (uniprotkb:P01350) and Apo-transferrin (uniprotkb:P02787) bind (MI:0407) by cross-linking studies (MI:0030) ,,MINT-7212864: Apo-transferrin (uniprotkb:P02787) and Ggly (uniprotkb:P01350) bind (MI:0407) by competition binding (MI:0405) [source]


    Effect of mutations in the ,5,,7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, H11)

    FEBS JOURNAL, Issue 21 2007
    Alexei S. Kasakov
    The human genome encodes ten different small heat shock proteins, each of which contains the so-called ,-crystallin domain consisting of 80,100 residues and located in the C-terminal part of the molecule. The ,-crystallin domain consists of six or seven ,-strands connected by different size loops and combined in two ,-sheets. Mutations in the loop connecting the ,5 and ,7 strands and conservative residues of ,7 in ,A-, ,B-crystallin and HSP27 correlate with the development of different congenital diseases. To understand the role of this part of molecule in the structure and function of small heat shock proteins, we mutated two highly conservative residues (K137 and K141) of human HSP22 and investigated the properties of the K137E and K137,141E mutants. These mutations lead to a decrease in intrinsic Trp fluorescence and the double mutation decreased fluorescence resonance energy transfer from Trp to bis-ANS bound to HSP22. Mutations K137E and especially K137,141E lead to an increase in unordered structure in HSP22 and increased susceptibility to trypsinolysis. Both mutations decreased the probability of dissociation of small oligomers of HSP22, and mutation K137E increased the probability of HSP22 crosslinking. The wild-type HSP22 possessed higher chaperone-like activity than their mutants when insulin or rhodanase were used as the model substrates. Because conservative Lys residues located in the ,5,,7 loop and in the ,7 strand appear to play an important role in the structure and properties of HSP22, mutations in this part of the small heat shock protein molecule might have a deleterious effect and often correlate with the development of different congenital diseases. [source]


    Identification of substrates for transglutaminase in Physarum polycephalum, an acellular slime mold, upon cellular mechanical damage

    FEBS JOURNAL, Issue 11 2007
    Fumitaka Wada
    Transglutaminases are Ca2+ -dependent enzymes that post-translationally modify proteins by crosslinking or polyamination at specific polypeptide-bound glutamine residues. Physarum polycephalum, an acellular slime mold, is the evolutionarily lowest organism expressing a transglutimase whose primary structure is similar to that of mammalian transglutimases. We observed transglutimase reaction products at injured sites in Physarum macroplasmodia upon mechanical damage. With use of a biotin-labeled primary amine, three major proteins constituting possible transglutimase substrates were affinity-purified from the damaged slime mold. The purified proteins were Physarum actin, a 40 kDa Ca2+ -binding protein with four EF-hand motifs (CBP40), and a novel 33 kDa protein highly homologous to the eukaryotic adenine nucleotide translocator, which is expressed in mitochondria. Immunochemical analysis of extracts from the damaged macroplasmodia indicated that CBP40 is partly dimerized, whereas the other proteins migrated as monomers on SDS/PAGE. Of the three proteins, CBP40 accumulated most significantly around injured areas, as observed by immunofluoresence. These results suggested that transglutimase reactions function in the response to mechanical injury. [source]


    Organic Electronics: High Tg Cyclic Olefin Copolymer Gate Dielectrics for N,N,-Ditridecyl Perylene Diimide Based Field-Effect Transistors: Improving Performance and Stability with Thermal Treatment (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
    Mater.
    Abstract A novel application of ethylene-norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field-effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally-treated N,N, -ditridecyl perylene diimide (PTCDI-C13)-based n-type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI-C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n-type FETs exhibit high atmospheric field-effect mobilities, up to 0.90 cm2 V,1 s,1 in the 20 V saturation regime and long-term stability with respect to H2O/O2 degradation, hysteresis, or sweep-stress over 110 days. By integrating the n-type FETs with p-type pentacene-based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized. [source]


    High Tg Cyclic Olefin Copolymer Gate Dielectrics for N,N,-Ditridecyl Perylene Diimide Based Field-Effect Transistors: Improving Performance and Stability with Thermal Treatment

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
    Jaeyoung Jang
    Abstract A novel application of ethylene-norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field-effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally-treated N,N, -ditridecyl perylene diimide (PTCDI-C13)-based n-type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI-C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n-type FETs exhibit high atmospheric field-effect mobilities, up to 0.90 cm2 V,1 s,1 in the 20 V saturation regime and long-term stability with respect to H2O/O2 degradation, hysteresis, or sweep-stress over 110 days. By integrating the n-type FETs with p-type pentacene-based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized. [source]


    Biotinylation in the hyperthermophile Aquifex aeolicus

    FEBS JOURNAL, Issue 6 2003
    Isolation of a cross-linked BPL:BCCP complex
    Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl CoA carboxylase and this post-translational modification of a single lysine residue is exceptionally specific. The exact details of the protein,protein interactions involved are unclear as a BPL:BCCP complex has not yet been isolated. Moreover, detailed information is lacking on the composition, biosynthesis and role of fatty acids in hyperthermophilic organisms. We have cloned, overexpressed and purified recombinant BPL and the biotinyl domain of BCCP (BCCP,67) from the extreme hyperthermophile Aquifex aeolicus. In vitro assays have demonstrated that BPL catalyses biotinylation of lysine 117 on BCCP,67 at temperatures of up to 70 °C. Limited proteolysis of BPL with trypsin and chymotrypsin revealed a single protease-sensitive site located 44 residues from the N-terminus. This site is adjacent to the predicted substrate-binding site and proteolysis of BPL is significantly reduced in the presence of MgATP and biotin. Chemical crosslinking with 1-ethyl-3-(dimethylamino-propyl)-carbodiimide (EDC) allowed the isolation of a BPL:apo-BCCP,67 complex. Furthermore, this complex was also formed between BPL and a BCCP,67 mutant lacking the lysine residue (BCCP,67 K117L) however, complex formation was considerably reduced using holo-BCCP,67. These observations provide evidence that addition of the biotin prosthetic group reduces the ability of BCCP,67 to heterodimerize with BPL, and emphasizes that a network of interactions between residues on both proteins mediates protein recognition. [source]


    The polypeptide chain release factor eRF1 specifically contacts the s4UGA stop codon located in the A site of eukaryotic ribosomes

    FEBS JOURNAL, Issue 10 2001
    Laurent Chavatte
    It has been shown previously [Brown, C.M. & Tate, W.P. (1994) J. Biol. Chem.269, 33164,33170.] that the polypeptide chain release factor RF2 involved in translation termination in prokaryotes was able to photocrossreact with mini-messenger RNAs containing stop signals in which U was replaced by 4-thiouridine (s4U). Here, using the same strategy we have monitored photocrosslinking to eukaryotic ribosomal components of 14-mer mRNA in the presence of , and 42-mer mRNA in the presence of tRNAAsp (tRNAAsp gene transcript). We show that: (a) both 14-mer and 42-mer mRNAs crossreact with ribosomal RNA and ribosomal proteins. The patterns of the crosslinked ribosomal proteins are similar with both mRNAs and sensitive to ionic conditions; (b) the crosslinking patterns obtained with 42-mer mRNAs show characteristic modification upon addition of tRNAAsp providing evidence for appropriate mRNA phasing onto the ribosome. Similar changes are not detected with the 14-mer pairs; (c) when eukaryotic polypeptide chain release factor 1 (eRF1) is added to the ribosome·tRNAAsp complex it crossreacts with the 42-mer mRNA containing the s4UGA stop codon located in the A site, but not with the s4UCA sense codon; this crosslink involves the N-terminal and middle domains of eRF1 but not the C domain which interacts with eukaryotic polypeptide chain release factor 3 (eRF3); (d) addition of eRF3 has no effect on the yield of eRF1,42-mer mRNA crosslinking and eRF3 does not crossreact with 42-mer mRNA. These experiments delineate the in vitro conditions allowing optimal phasing of mRNA on the eukaryotic ribosome and demonstrate a direct and specific contact of ,core' eRF1 and s4UGA stop codon within the ribosomal A site. [source]


    Covalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450scc

    FEBS JOURNAL, Issue 6 2001
    Edman degradation of complexes of the steroidogenic hydroxylase system, Mass spectrometry
    NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin ,P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin,P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system. [source]


    Characterization of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p

    FEMS YEAST RESEARCH, Issue 3 2007
    Aaron Scott
    Abstract Saccharomyces cerevisiae and some related yeasts are unusual in that two of the enzyme activities (galactose mutarotase and UDP-galactose 4-epimerase) required for the Leloir pathway of d -galactose catabolism are contained within a single protein,Gal10p. The recently solved structure of the protein shows that the two domains are separate and have similar folds to the separate enzymes from other species. The biochemical properties of Gal10p have been investigated using recombinant protein expressed in, and purified from, Escherichia coli. Protein,protein crosslinking confirmed that Gal10p is a dimer in solution and this state is unaffected by the presence of substrates. The steady-state kinetic parameters of the epimerase reaction are similar to those of the human enzyme, and are not affected by simultaneous activity at the mutarotase active site. The mutarotase active site has a strong preference for galactose over glucose, and is not affected by simultaneous epimerase activity. This absence of reciprocal kinetic effects between the active sites suggests that they act independently and do not influence or regulate each other. [source]